Mean-field annealing for phase unwrapping

被引:0
|
作者
Stramaglia, Sebastiano [1 ]
Guerriero, Luciano [1 ,2 ]
Pasquariello, Guido [1 ]
Veneziani, Nicola [1 ]
机构
[1] Ist. Elaborazione Segnali e Immagini, Consiglio Nazionale delle Ricerche, Via Amendola 166/5, 70126 Bari, Italy
[2] Ist. Naz. per la Fis. della Materia, Dipartimento Interateneo di Fisica, Via Amendola 173, 70126 Bari, Italy
来源
Applied Optics | 1999年 / 38卷 / 08期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Use of mean-field annealing theory is proposed for solving the phase-unwrapping (PU) problem. PU is formulated as a constrained optimization problem for the field of integer corrections to be added to the wrapped gradient field. A deterministic algorithm is described to provide an approximation of the average of the correction field over the global minima of the cost function. The proposed algorithm can be applied for any choice of the cost function. Using a cost function based on second-order differences, we obtain results close to those from simulated annealing and spend less computational time. © 1999 Optical Society of America.
引用
收藏
页码:1377 / 1383
相关论文
共 50 条
  • [21] MODEL-FREE MEAN-FIELD REINFORCEMENT LEARNING: MEAN-FIELD MDP AND MEAN-FIELD Q-LEARNING
    Carmona, Rene
    Lauriere, Mathieu
    Tan, Zongjun
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B): : 5334 - 5381
  • [22] Phase transitions in chromatin: Mesoscopic and mean-field approaches
    Tiani, R.
    Jardat, M.
    Dahirel, V.
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (02):
  • [23] A mean-field model for the phase diagram of liquid crystals
    Tublek, A
    Yurtseven, H
    Salihoglu, S
    PHASE TRANSITIONS, 1998, 64 (04) : 203 - 214
  • [24] Phase transition in a mean-field model for sympatric speciation
    Schwammle, V.
    Luz-Burgoa, K.
    Martins, J. S. Sa
    Moss De Oliveira, S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) : 612 - 618
  • [25] Mean-field theory of assortative networks of phase oscillators
    Restrepo, Juan G.
    Ott, Edward
    EPL, 2014, 107 (06)
  • [26] Universal mean-field phase diagram for biaxial nematics
    Bisi, Fulvio
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2008, 480 : 182 - 201
  • [27] Mean-field phase diagram of interacting eg electrons
    Raczkowski, M
    Olés, AM
    Frésard, R
    PHYSICA B-CONDENSED MATTER, 2005, 359 : 672 - 674
  • [28] Topological origin of the phase transition in a mean-field model
    Casetti, L
    Cohen, EGD
    Pettini, M
    PHYSICAL REVIEW LETTERS, 1999, 82 (21) : 4160 - 4163
  • [29] Mean-field model for the CE-phase of manganites
    Schlottmann, P.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [30] Geometric phase of interacting qubits: Mean-field analysis
    Dajka, J.
    Mierzejewski, M.
    Luczka, J.
    PHYSICAL REVIEW A, 2009, 80 (04):