Lifting-line theory of an arched wing in asymmetric flight

被引:0
|
作者
Technion - Israel Inst of Technology, Haifa, Israel [1 ]
机构
来源
J Aircr | / 5卷 / 1023-1026期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Wings
引用
收藏
相关论文
共 50 条
  • [41] LIFTING-LINE THEORY OF TRANSONIC OBLIQUE WINGS - PROBLEMS AND SOLUTIONS
    CHENG, HK
    MENG, SY
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (08): : 999 - 1000
  • [42] LIFTING-LINE THEORY OF SWEPT WINGS BASED ON THE FULL POTENTIAL-THEORY
    CHENG, HK
    CHOW, R
    MELNIK, RE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1981, 32 (05): : 481 - 496
  • [43] UNSTEADY LIFTING-LINE THEORY AS A SINGULAR-PERTURBATION PROBLEM.
    Ahmadi, Ali R.
    Widnall, Sheila E.
    Journal of Fluid Mechanics, 1985, 153 : 59 - 81
  • [44] Predicting maximum lift coefficient for twisted wings using lifting-line theory
    Phillips, W. F.
    Alley, N. R.
    JOURNAL OF AIRCRAFT, 2007, 44 (03): : 898 - 910
  • [45] An unsteady aerodynamic model for three-dimensional wing based on augmented lifting-line method
    Li, X.
    Zhou, Z.
    Guo, J. H.
    AERONAUTICAL JOURNAL, 2023, 127 (1307): : 97 - 115
  • [46] LIFTING-LINE THEORY OF SUPERCAVITATING PROPELLERS AT NON-ZERO CAVITATION NUMBERS
    NISHIYAM.T
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1971, 51 (08): : 577 - &
  • [47] Drag-reduction inverse design of wings based on lifting-line theory
    Jiang Y.-N.
    Jia H.-G.
    Jia, Hong-Guang (jiahg@ciomp.ac.cn), 2017, Chinese Academy of Sciences (25): : 1259 - 1265
  • [48] Swept and curved wings: a numerical approach based on generalized lifting-line theory
    Devinant, P
    Gallois, T
    COMPUTATIONAL MECHANICS, 2002, 29 (4-5) : 322 - 331
  • [49] Aspects of Prandtl's Lifting-Line Theory and Wake Roll-Up
    Hoeijmakers, Harry W. M.
    Sanders, Marijn P. J.
    Koerkamp, Luuk H. Groot
    van Garrel, Arne
    Venner, Cees H.
    AIAA AVIATION FORUM AND ASCEND 2024, 2024,
  • [50] Swept and curved wings: a numerical approach based on generalized lifting-line theory
    Ph. Devinant
    T. Gallois
    Computational Mechanics, 2002, 29 : 322 - 331