Phase-space interferences as the source of negative values of the Wigner distribution function

被引:1
|
作者
Dragoman, Daniela [1 ,2 ]
机构
[1] Department of Physics, University of Bucharest, P.O. Box MG-11, 76900 Bucharest, Romania
[2] P.O. Box 1-480, 70700 Bucharest, Romania
关键词
Approximation theory - Phase space methods - Quantum interference phenomena - Quantum optics - Refractive index - Waveguides;
D O I
10.1364/josaa.17.002481
中图分类号
学科分类号
摘要
It is shown that the negative values of the Wigner distribution function in classical optics are a consequence of the phase-space interference among the Gaussian beams into which an arbitrary light distribution (or a superposition of light distributions) can be decomposed. These elementary Gaussian beams partition the phase space in wave optics in adjacent, interacting, finite-area cells, in contrast to geometrical optics, where the phase space is continuous and a light beam can be decomposed into a number of perfectly localized, non-interacting rays. © 2000 Optical Society of America.
引用
收藏
页码:2481 / 2485
相关论文
共 50 条
  • [21] CLASSICAL TRAJECTORY CALCULATIONS FOR H+-H COLLISIONS WITH THE WIGNER FUNCTION AS INITIAL PHASE-SPACE DISTRIBUTION
    EICHENAUER, D
    GRUN, N
    SCHEID, W
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1981, 14 (20) : 3929 - 3941
  • [22] WIGNER PHASE-SPACE DESCRIPTION OF A MORSE OSCILLATOR
    LEE, HW
    SCULLY, MO
    JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (09): : 4604 - 4610
  • [23] WIGNER PHASE-SPACE REPRESENTATION OF THERMAL EXCITATIONS
    BERMAN, M
    PHYSICAL REVIEW A, 1990, 42 (04): : 1863 - 1868
  • [24] Experimental reconstruction of Wigner phase-space current
    Chen, Yi-Ru
    Hsieh, Hsien-Yi
    Ning, Jingyu
    Wu, Hsun-Chung
    Li Chen, Hua
    Chuang, You-Lin
    Yang, Popo
    Steuernagel, Ole
    Wu, Chien-Ming
    Lee, Ray-Kuang
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [25] THE WIGNER PHASE-SPACE DESCRIPTION OF COLLISION PROCESSES
    LEE, HW
    SCULLY, MO
    FOUNDATIONS OF PHYSICS, 1983, 13 (01) : 61 - 72
  • [26] WIGNER DISTRIBUTION FUNCTION AND SECOND QUANTIZATION IN PHASE SPACE
    BRITTIN, WE
    CHAPPELL, WR
    REVIEWS OF MODERN PHYSICS, 1962, 34 (04) : 620 - &
  • [27] GEOMETRY OF 2 DIMENSIONAL TORI IN PHASE-SPACE - PROJECTIONS, SECTIONS AND THE WIGNER FUNCTION
    DEALMEIDA, AMO
    HANNAY, JH
    ANNALS OF PHYSICS, 1982, 138 (01) : 115 - 154
  • [28] WEYL RULE AND WIGNER EQUIVALENTS FOR PHASE-SPACE MULTINOMIALS
    HALL, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01): : 29 - 36
  • [29] Weyl and Wigner functions in an extended phase-space formalism
    Chountasis, S
    Vourdas, A
    PHYSICAL REVIEW A, 1998, 58 (03): : 1794 - 1798