Optimal estimation of two-qubit pure-state entanglement

被引:0
|
作者
Acián, Antonio [1 ]
Tarrach, Rolf [1 ]
Vidal, Guifreá [1 ]
机构
[1] Dept. d'Estructura Constituents M., Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
关键词
Electron transport properties - Matrix algebra - Parameter estimation - Polarization - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of optimally estimating the entanglement of an unknown pure state of two qubits was analyzed. For this purpose, the quality of the most general quantum measurements on N identical copies of the state was assessed through the gain of information they provide about the nonlocal parameter of the state. A solution to this problem was established and proven. In particular, it was shown that the optimal estimation of a nonlocal parameter can be done through a local measurement.
引用
收藏
页码:062307 / 062301
相关论文
共 50 条
  • [21] Optimal two-qubit gates in recurrence protocols of entanglement purification
    Preti, Francesco
    Calarco, Tommaso
    Torres, Juan Mauricio
    Bernad, Jozsef Zsolt
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [22] Optimal two-qubit gate for generation of random bipartite entanglement
    Znidaric, Marko
    PHYSICAL REVIEW A, 2007, 76 (01):
  • [23] Schmidt analysis of pure-state entanglement
    Eberly, J. H.
    LASER PHYSICS, 2006, 16 (06) : 921 - 926
  • [24] Estimation of entanglement negativity of a two-qubit quantum system with two measurements
    Adhikari, Satyabrata
    EPL, 2018, 124 (04)
  • [25] Revisiting comparison between entanglement measures for two-qubit pure states
    Singh, Ashutosh
    Ahamed, Ijaz
    Home, Dipankar
    Sinha, Urbasi
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (01) : 157 - 166
  • [26] Optimal qubit-bases for preserving two-qubit entanglement against Pauli noises
    Hui-Min Zhang
    Xin-Wen Wang
    Shi-Qing Tang
    Ya-Ju Song
    Quantum Information Processing, 2020, 19
  • [27] Optimal qubit-bases for preserving two-qubit entanglement against Pauli noises
    Zhang, Hui-Min
    Wang, Xin-Wen
    Tang, Shi-Qing
    Song, Ya-Ju
    QUANTUM INFORMATION PROCESSING, 2020, 19 (10)
  • [28] Two-qubit entanglement in an antiferromagnetic environment
    Yuan, XZ
    Zhu, KD
    Wu, ZJ
    EUROPEAN PHYSICAL JOURNAL D, 2005, 33 (01): : 129 - 132
  • [29] Entanglement capability of two-qubit operations
    Kraus, B
    Dür, W
    Vidal, G
    Cirac, JI
    Lewenstein, M
    Linden, N
    Popescu, S
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2): : 91 - 99
  • [30] Optimizing Entanglement in Two-Qubit Systems
    Luna-Hernandez, Salvio
    Quintana, Claudia
    Rosas-Ortiz, Oscar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,