Emergence of quantum ergodicity in rough billiards

被引:0
|
作者
机构
来源
Phys Rev Lett | / 10卷 / 1833期
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] An exactly solvable model for the integrability-chaos transition in rough quantum billiards
    Olshanii, Maxim
    Jacobs, Kurt
    Rigol, Marcos
    Dunjko, Vanja
    Kennard, Harry
    Yurovsky, Vladimir A.
    NATURE COMMUNICATIONS, 2012, 3
  • [32] A THEOREM ON ERGODICITY OF 2-DIMENSIONAL HYPERBOLIC BILLIARDS
    BUNIMOVICH, LA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (03) : 599 - 621
  • [33] QUANTUM BILLIARDS
    VONBAEYER, HC
    SCIENCES-NEW YORK, 1991, 31 (04): : 8 - 10
  • [34] Correction: Corrigendum: An exactly solvable model for the integrability–chaos transition in rough quantum billiards
    Maxim Olshanii
    Kurt Jacobs
    Marcos Rigol
    Vanja Dunjko
    Harry Kennard
    Vladimir A. Yurovsky
    Nature Communications, 4 (1)
  • [35] Ultraslow diffusion and weak ergodicity breaking in right triangular billiards
    Huang, Junxiang
    Zhao, Hong
    PHYSICAL REVIEW E, 2017, 95 (03) : 8 - 14
  • [36] GENERIC ERGODICITY OF POLYGONAL BILLIARDS (ACCORDING TO KERCKHOFF, MASUR AND SMILLIE)
    ARNOUX, P
    ASTERISQUE, 1988, (161-62) : 203 - 221
  • [37] Quantum mushroom billiards
    Barnett, Alex H.
    Betcke, Timo
    CHAOS, 2007, 17 (04)
  • [38] Quantum chaos in billiards
    Baecker, Arnd
    COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 60 - 64
  • [39] Semiclassical theory of integrable and rough Andreev billiards
    W. Ihra
    M. Leadbeater
    J.L. Vega
    K. Richter
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 425 - 435
  • [40] Semiclassical theory of integrable and rough Andreev billiards
    Ihra, W
    Leadbeater, M
    Vega, JL
    Richter, K
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (03): : 425 - 435