Ordered defect chains in the 2D anisotropic complex Ginzburg-Landau equation

被引:0
|
作者
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany [1 ]
机构
来源
Chaos Solitons Fractals | / 4卷 / 745-752期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [42] HOMOCLINIC EXPLOSIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    LUCE, BP
    PHYSICA D, 1995, 84 (3-4): : 553 - 581
  • [43] Controlling turbulence in the complex Ginzburg-Landau equation
    Xiao, JH
    Hu, G
    Yang, JZ
    Gao, JH
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5552 - 5555
  • [44] Inviscid limits of the complex Ginzburg-Landau equation
    Bechouche, P
    Jüngel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) : 201 - 226
  • [45] Taming turbulence in the complex Ginzburg-Landau equation
    Zhan, Meng
    Zou, Wei
    Liu, Xu
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [46] ON THE STABILITY OF RADIAL SOLUTIONS TO AN ANISOTROPIC GINZBURG-LANDAU EQUATION
    Lamy, Xavier
    Zuniga, Andres
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (01) : 723 - 736
  • [47] Extensive properties of the complex Ginzburg-Landau equation
    Collet, P
    Eckmann, JP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 699 - 722
  • [48] On the complex Ginzburg-Landau equation with a delayed feedback
    Casal, AC
    Díaz, JI
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (01): : 1 - 17
  • [49] Transition to antispirals in the complex Ginzburg-Landau equation
    Wang, HL
    Ou-Yang, Q
    CHINESE PHYSICS LETTERS, 2004, 21 (08) : 1437 - 1440
  • [50] Global attractors for the complex Ginzburg-Landau equation
    Li, Fang
    You, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 14 - 24