On winning Ehrenfeucht games and monadic NP

被引:0
|
作者
Schwentick, T.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A WINNING STRATEGY FOR LOTTO GAMES
    JOE, H
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1990, 18 (03): : 233 - 244
  • [42] WINNING AN INFINITE COMBINATION OF GAMES
    Bowler, Nathan
    MATHEMATIKA, 2012, 58 (02) : 419 - 431
  • [43] Winning Cores in Parity Games
    Vester, Steen
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 662 - 671
  • [44] Finitary Winning in ω-Regular Games
    Chatterjee, Krishnendu
    Henzinger, Thomas A.
    Horn, Florian
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2009, 11 (01)
  • [45] The Winning Ways of Concurrent Games
    Clairambault, Pierre
    Gutierrez, Julian
    Winskel, Glynn
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 235 - 244
  • [46] Finitary winning in ω-regular games
    Chatterjee, Krishnendu
    Henzinger, Thomas A.
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PROCEEDINGS, 2006, 3920 : 257 - 271
  • [47] A REGIMEN FOR WINNING FOOTBALL GAMES
    BRUDZYNSKI, CN
    GENERAL PRACTICE, 1968, 37 (03): : 175 - +
  • [48] Monadic second-order unification is NP-complete
    Levy, J
    Schmidt-Schauss, M
    Villaret, M
    REWRITING TECHNIQUES AND APPLICATIONS, PROCEEDINGS, 2004, 3091 : 55 - 69
  • [49] ON NON-DETERMINED EHRENFEUCHT-FRAISSE GAMES AND UNSTABLE THEORIES
    HYTTINEN, T
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1992, 38 (04): : 399 - 408
  • [50] Directed reachability: From Ajtai-Fagin to Ehrenfeucht-Fraisse games
    Marcinkowski, J
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 1999, 1683 : 338 - 349