Structure of constant mean curvature embeddings in euclidean three space

被引:0
|
作者
Korevaar, Nick
Kusner, Rob
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres
    Luis J. Alías
    Paolo Piccione
    Journal of Geometric Analysis, 2013, 23 : 677 - 708
  • [32] The total mean curvature of submanifolds in a Euclidean space
    Hou, ZH
    MICHIGAN MATHEMATICAL JOURNAL, 1998, 45 (03) : 497 - 505
  • [33] Timelike surfaces with constant mean curvature in Lorentz three-space
    López, R
    TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (04) : 515 - 532
  • [34] CONSTANT MEAN-CURVATURE PLANES WITH INNER ROTATIONAL SYMMETRY IN EUCLIDEAN 3-SPACE
    TIMMRECK, M
    PINKALL, U
    FERUS, D
    MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (04) : 561 - 568
  • [35] Translation hypersurfaces with constant scalar curvature into the Euclidean space
    Barnabé Pessoa Lima
    Newton Luís Santos
    Paulo Alexandre Araújo Sousa
    Israel Journal of Mathematics, 2014, 201 : 797 - 811
  • [36] Translation Hypersurfaces with Constant Sr Curvature in the Euclidean Space
    Lima, Barnabe P.
    Santos, Newton L.
    Silva, Juscelino P.
    Sousa, Paulo A. A.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2016, 88 (04): : 2039 - 2052
  • [37] TRANSLATION AND HOMOTHETICAL SURFACES IN EUCLIDEAN SPACE WITH CONSTANT CURVATURE
    Lopez, Rafael
    Moruz, Marilena
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 523 - 535
  • [38] Translation surfaces in Euclidean space with constant Gaussian curvature
    Hasanis, Thomas
    Lopez, Rafael
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (06) : 1415 - 1447
  • [39] Euclidean complete hypersurfaces with negative constant affine mean curvature
    Wang, Baofu
    Li, An-Min
    RESULTS IN MATHEMATICS, 2008, 52 (3-4) : 383 - 398
  • [40] TRANSLATION HYPERSURFACES WITH CONSTANT SCALAR CURVATURE INTO THE EUCLIDEAN SPACE
    Lima, Barnabe Pessoa
    Santos, Newton Luis
    Araujo Sousa, Paulo Alexandre
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (02) : 797 - 811