Bounds on the complexity of recurrent neural network implementations of finite state machines

被引:0
|
作者
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, United States [1 ]
机构
来源
NEURAL NETW. | / 2卷 / 243-252期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
27
引用
收藏
相关论文
共 50 条
  • [31] Theoretical bounds for switching activity analysis in Finite-State Machines
    Marculescu, D
    Marculescu, R
    Pedram, M
    1998 INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN - PROCEEDINGS, 1998, : 36 - 41
  • [32] Study of the Complexity of CMOS Neural Network Implementations Featuring Heart Rate Detection
    Baryczkowski, Piotr
    Szczepaniak, Sebastian
    Matykiewicz, Natalia
    Perz, Kacper
    Szczesny, Szymon
    ELECTRONICS, 2023, 12 (20)
  • [33] Descriptional Complexity of (Un)ambiguous Finite State Machines and Pushdown Automata
    Holzer, Markus
    Kutrib, Martin
    REACHABILITY PROBLEMS, 2010, 6227 : 1 - 23
  • [34] Bounds on the complexity of neural-network models and comparison with linear methods
    Hlavácková-Schindler, K
    Sanguineti, M
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2003, 17 (02) : 179 - 194
  • [35] Stable encoding of finite-state machines in discrete-time recurrent neural nets with sigmoid units
    Carrasco, RC
    Forcada, ML
    Valdés-Muñoz, MA
    Ñeco, RP
    NEURAL COMPUTATION, 2000, 12 (09) : 2129 - 2174
  • [36] Analyzing state dynamics in a recurrent neural network
    Spiegel, R
    Suret, M
    Le Pelley, ME
    McLaren, IPL
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 834 - 839
  • [37] NEURAL NETWORK CIRCUIT IMPLEMENTATIONS
    SANCHEZSINENCIO, E
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02): : 192 - 192
  • [38] Application of Artificial and recurrent neural network on the steady-state and transient finite element modeling
    Yuan, Cadmus
    Hong, Yu-Jun
    Lee, Chang-Chi
    Chian, Kou-Ning
    Huang, Jin-Huang
    2019 20TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME), 2019,
  • [39] Vector Symbolic Finite State Machines in Attractor Neural Networks
    Cotteret, Madison
    Greatorex, Hugh
    Ziegler, Martin
    Chicca, Elisabetta
    NEURAL COMPUTATION, 2024, 36 (04) : 549 - 595
  • [40] State encoding of finite-state machines targeting threshold and majority logic based implementations with application to nanotechnologies
    Zhang, R
    Jha, NK
    19TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS, 2005, : 317 - 322