New moving finite element method based on quadratic approximation functions

被引:0
|
作者
机构
[1] Hansen, Jens A.
[2] Hassager, Ole
来源
Hansen, Jens A. | 1600年 / 28期
关键词
Mathematical Techniques;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Moving Force Identification based on Wavelet Finite Element Method
    You, Q.
    Law, S. S.
    Shi, Z. Y.
    FOURTH INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, 2010, 7522
  • [22] Applications of a moving finite element method
    Coimbra, MDC
    Sereno, C
    Rodrigues, A
    CHEMICAL ENGINEERING JOURNAL, 2001, 84 (01) : 23 - 29
  • [23] Applications of a moving finite element method
    Coimbra, M.D.C.
    Sereno, C.
    Rodrigues, A.
    Chemical Engineering Journal, 2001, 83 (04) : 23 - 29
  • [24] Moving particle finite element method
    Hao, S
    Park, HS
    Liu, WK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (08) : 1937 - 1958
  • [25] Mixed moving finite element method
    Zhao, Shengjie
    Chen, Yufu
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 381 - 391
  • [26] Uniform superapproximation of the derivative of tetrahedral quadratic finite element approximation
    Liu, JH
    Zhu, QD
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (01) : 75 - 82
  • [27] New quadratic nonconforming finite element on rectangles
    Lee, Heejeong
    Sheen, Dongwoo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (04) : 954 - 970
  • [28] Virtual functions of the space-time finite element method in moving mass problems
    Bajer, Czeslaw I.
    Dyniewicz, Bartlomiej
    COMPUTERS & STRUCTURES, 2009, 87 (7-8) : 444 - 455
  • [30] CONJUGATE APPROXIMATION FUNCTIONS IN FINITE-ELEMENT ANALYSIS
    BRAUCHLI, HJ
    QUARTERLY OF APPLIED MATHEMATICS, 1971, 29 (01) : 65 - &