A level set method for inverse problems

被引:0
|
作者
Burger, M. [1 ]
机构
[1] SFB F 013 Numer. Symbolic Sci. C., Johannes Kepler Univ. Linz, Altenbergerstr. 69, 4040 Linz, Austria
来源
| 1600年 / Institute of Physics Publishing卷 / 17期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] An Improved Level Set Method for Reachability Problems in Differential Games
    Liao, Wei
    Liang, Taotao
    Xiong, Pengwen
    Wang, Chen
    Song, Aiguo
    Liu, Peter X.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (05): : 2907 - 2916
  • [22] A level set method for shape optimization in semilinear elliptic problems
    Zhu, Shengfeng
    Hu, Xianliang
    Wu, Qingbiao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 104 - 120
  • [23] Level Set Method for Shape and Topology Optimization of Contact Problems
    Myslinski, Andrzej
    SYSTEM MODELING AND OPTIMIZATION, 2009, 312 : 397 - 410
  • [24] An Improved Level Set Method for Reachability Problems in Differential Games
    Liao, Wei
    Liang, Taotao
    Xiong, Pengwen
    Wang, Chen
    Song, Aiguo
    Liu, Peter X.
    arXiv, 2021,
  • [25] SOLUTION OF A SET OF INVERSE PROBLEMS OF AEROTHERMOCHEMISTRY
    GRISHIN, AM
    KUZIN, AY
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1973, 9 (05) : 572 - 578
  • [26] Level-set, penalization and cartesian meshes: A paradigm for inverse problems and optimal design
    Chantalat, Frederic
    Bruneau, Charles-Henri
    Galusinski, Cedric
    Iollo, Angelo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) : 6291 - 6315
  • [27] A survey in mathematics for industry - A survey on level set methods for inverse problems and optimal design
    Burger, M
    Osher, SJ
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 : 263 - 301
  • [28] Level set methods for inverse scattering
    Dorn, Oliver
    Lesselier, Dominique
    INVERSE PROBLEMS, 2006, 22 (04) : R67 - R131
  • [29] IMMERSED INTERFACE METHOD FOR A LEVEL SET FORMULATION OF PROBLEMS WITH MOVING BOUNDARIES
    Frolkovic, Peter
    ALGORITMY 2012, 2012, : 32 - 41
  • [30] Undersea Buried Pipeline Reconstruction Based on the Level Set and Inverse Multiquadric Regularization Method
    Wenjing Shang
    Wei Xue
    Yidong Xu
    Sergey B. Makarov
    Yingsong Li
    Journal of Ocean University of China, 2022, 21 : 101 - 112