PROBLEM OF IDENTIFYING HAZARDOUS LOCATIONS USING ACCIDENT DATA.

被引:0
|
作者
Hauer, Ezra [1 ]
Persaud, Bhagwant N. [1 ]
机构
[1] Univ of Toronto, Dep of Civil, Engineering, Toronto, Ont, Can, Univ of Toronto, Dep of Civil Engineering, Toronto, Ont, Can
关键词
D O I
暂无
中图分类号
学科分类号
摘要
5
引用
收藏
页码:36 / 43
相关论文
共 50 条
  • [21] A countermeasure-based approach for identifying and treating accident prone locations
    Sayed, T
    Navin, F
    Abdelwahab, W
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1997, 24 (05) : 683 - 691
  • [22] Some observations on identifying disease-related genes using expression data.
    Smith, AD
    Satagopan, JM
    Gonen, M
    AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (04) : 260 - 260
  • [23] Analysis of Historical Accident Data to Determine Accident Prone Locations and Cause of Accidents
    Ifthikar, Arshardh
    Hettiarachchi, Saman
    2018 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION (ISMS), 2018, : 11 - 15
  • [24] A data mining approach to characterize road accident locations
    Kumar S.
    Toshniwal D.
    Journal of Modern Transportation, 2016, 24 (1): : 62 - 72
  • [25] Empirical analysis on hazardous material transportation using road traffic census and accident data
    Ito, T
    Hayano, M
    Naito, T
    Asakura, Y
    Hato, E
    Wada, T
    LOGISTICS SYSTEMS FOR SUSTAINABLE CITIES, 2004, : 235 - 249
  • [26] Identifying hazardous obstructions within an intersection using unmanned aerial data analysis
    Congress, Surya Sarat Chandra
    Puppala, Anand J.
    Banerjee, Aritra
    Patil, Ujwalkumar D.
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2021, 10 (01) : 34 - 48
  • [27] Identifying locations with potential for accident reductions - Use of direct diagnostics and pattern recognition methodologies
    Kononov, J
    STATISTICAL METHODOLOGY: APPLICATIONS TO DESIGN, DATA ANALYSIS, AND EVALUATION: SAFETY AND HUMAN PERFORMANCE, 2002, (1784): : 153 - 158
  • [28] IDENTIFYING PROGNOSTICALLY RELEVANT SUBSETS OF ENDOMETRIAL CANCER USING UNSUPERVISED CLUSTERING OF IMMUNOHISTOCHEMICAL STAINING DATA.
    Huvila, J.
    Laajala, D.
    Edvist, P. H.
    Talve, L.
    Grenman, S.
    Ponten, F.
    Aittokallio, T.
    Carpen, O.
    Auranen, A.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2013, 23 (08)
  • [29] EVALUATION OF SCHEMES FOR DETECTING AND IDENTIFYING GROSS ERRORS IN PROCESS DATA.
    Rosenberg, Joseph
    Mah, Richard S.H.
    Iordache, Corneliu
    Industrial and Engineering Chemistry Research, 1987, 26 (03): : 555 - 564
  • [30] Using unmanned aerial vehicles and robotics in hazardous locations safely
    Kas, Kathleen A.
    Johnson, Gary K.
    PROCESS SAFETY PROGRESS, 2020, 39 (01)