Model reduction for the resolution of multidimensional inverse heat conducion problems

被引:0
|
作者
Videcoq, E. [1 ]
Petit, D. [1 ]
机构
[1] Lab. d'Etud. Thermiques - UMR, CNRS 6608, ENSMA, BP 109, 86960 Futuroscope Cedex, France
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] INVERSE PROBLEMS FOR MULTIDIMENSIONAL VIBRATING SYSTEMS
    GLADWELL, GML
    ZHU, BR
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 439 (1907): : 511 - 530
  • [22] WAVE BASES IN MULTIDIMENSIONAL INVERSE PROBLEMS
    BELISHEV, MI
    MATHEMATICS OF THE USSR-SBORNIK, 1990, 67 (01): : 23 - 42
  • [23] ONE CLASS OF MULTIDIMENSIONAL INVERSE PROBLEMS
    AMIROV, AK
    DOKLADY AKADEMII NAUK SSSR, 1983, 272 (02): : 265 - 267
  • [24] SPECTRAL INFLUENCE FUNCTIONS OF BOUNDARY EFFECTS IN MULTIDIMENSIONAL INVERSE HEAT-CONDUCTION PROBLEMS
    MATSEVITY, YM
    SLESARENKO, AP
    TSAKANYAN, OS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (05): : 71 - 76
  • [25] The Reduction of the Multidimensional Model of the Nonlinear Heat Exchange System with Delay
    Shilin, Aleksandr
    Bukreev, Viktor
    INFORMATION TECHNOLOGIES AND MATHEMATICAL MODELLING, 2014, 487 : 387 - 396
  • [26] AN OPTIMIZATION METHOD FOR SOLUTION OF MULTIDIMENSIONAL INVERSE PROBLEMS OF HEAT-CONDUCTIVITY IN EXTREMAL STATEMENT
    SEVASTIYANOV, VG
    AVTOMATIKA, 1984, (06): : 62 - 67
  • [27] Resolution of Unknown Heat Source Inverse Heat Conduction Problems Using Particle Swarm Optimization
    Ding, Peng
    Sun, DongLiang
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (02) : 158 - 168
  • [28] INVERSE PROBLEMS - EVOLUTION AND RESOLUTION
    GILBERT, F
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 224 - 224
  • [29] A model reduction approach for inverse problems with operator valued data
    Jürgen Dölz
    Herbert Egger
    Matthias Schlottbom
    Numerische Mathematik, 2021, 148 : 889 - 917
  • [30] A model reduction approach for inverse problems with operator valued data
    Doelz, Juergen
    Egger, Herbert
    Schlottbom, Matthias
    NUMERISCHE MATHEMATIK, 2021, 148 (04) : 889 - 917