GENERAL FARKAS LEMMA.

被引:0
|
作者
Swartz, C. [1 ]
机构
[1] New Mexico State Univ, Dep of, Mathematical Sciences, Las Cruces,, NM, USA, New Mexico State Univ, Dep of Mathematical Sciences, Las Cruces, NM, USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An abstract version of the classical Farkas lemma for locally convex spaces is given. The abstract Farkas lemma is shown to imply Farkas-type results which have been previously obtained.
引用
收藏
页码:237 / 244
相关论文
共 50 条
  • [11] A Geometric Problem and the Hopf Lemma. II
    Yan Yan Li*
    Louis Nirenberg
    Chinese Annals of Mathematics, Series B, 2006, 27 : 193 - 218
  • [12] On singular elementary surfaces and the Dehn lemma.
    Johansson, I
    MATHEMATISCHE ANNALEN, 1935, 110 : 312 - 320
  • [13] A geometric problem and the Hopf Lemma. I
    Li, YY
    Nirenberg, L
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2006, 8 (02) : 317 - 339
  • [14] Some analogies to Schwarz's lemma.
    Grunsky, H
    MATHEMATISCHE ANNALEN, 1933, 108 : 190 - 196
  • [15] A discrete variant of Farkas' Lemma
    Bartl, David
    Dubey, Dipti
    OPERATIONS RESEARCH LETTERS, 2017, 45 (02) : 160 - 163
  • [16] An Application of Farkas's Lemma
    Stoica, George
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (06): : 592 - 592
  • [17] Geometric problem and the Hopf Lemma. II
    Li, Yan Yan
    Nirenberg, Louis
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 193 - 218
  • [18] A Geometric Problem and the Hopf Lemma. II
    Louis NIRENBERG
    ChineseAnnalsofMathematics, 2006, (02) : 193 - 218
  • [19] Context Specificity of Lemma. Diachronic Analysis
    Hula, Jan
    Kubat, Miroslav
    Cech, Radek
    Chen, Xinying
    Ciz, David
    Pelegrinova, Katerina
    Milicka, Jiri
    GLOTTOMETRICS, 2019, 45 : 7 - 23
  • [20] Around a Farkas type lemma
    Dinh, N.
    Goberna, M. A.
    Volle, M.
    OPTIMIZATION, 2024, 73 (12) : 3609 - 3625