Classical mechanics from quantum state diffusion - a phase-space approach

被引:0
|
作者
Strunz, W. T.
Percival, I. C.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Emergent time crystals from phase-space noncommutative quantum mechanics
    Bernardini, A. E.
    Bertolami, O.
    PHYSICS LETTERS B, 2022, 835
  • [32] PHASE-SPACE APPROACH TO QUANTUM DYNAMICS
    LEBOEUF, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19): : 4575 - 4586
  • [33] QUADRATIC HAMILTONIANS IN PHASE-SPACE QUANTUM-MECHANICS
    GADELLA, M
    GRACIABONDIA, JM
    NIETO, LM
    VARILLY, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14): : 2709 - 2738
  • [34] Heat flow and noncommutative quantum mechanics in phase-space
    Santos, Jonas F. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [35] Transformation theory for phase-space representations of quantum mechanics
    Wilkie, Joshua
    Brumer, Paul
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (06): : 064101 - 064101
  • [36] AMPLITUDE PHASE-SPACE MODEL FOR QUANTUM-MECHANICS
    GUDDER, SP
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1985, 23 (04) : 343 - 353
  • [37] SUBSIDIARY CONDITIONS IN THE PHASE-SPACE REPRESENTATION OF QUANTUM MECHANICS
    TAKABAYASI, T
    PROGRESS OF THEORETICAL PHYSICS, 1953, 10 (01): : 122 - 124
  • [38] QUANTUM-MECHANICS IN COHERENT ALGEBRAS ON PHASE-SPACE
    LESCHE, B
    SELIGMAN, TH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : 91 - 105
  • [39] DISCRETE PHASE-SPACE MODEL FOR QUANTUM-MECHANICS
    BUOT, FA
    BELLS THEOREM, QUANTUM THEORY AND CONCEPTIONS OF THE UNIVERSE, 1989, 37 : 159 - 162
  • [40] Transformation theory for phase-space representations of quantum mechanics
    Wilkie, J
    Brumer, P
    PHYSICAL REVIEW A, 2000, 61 (06): : 4