Fractal nature of viscous fingering in three-dimensional pore-level models

被引:0
|
作者
机构
来源
Phys Rev E. | / 3卷 / 2502期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Three-Dimensional Waves on the Surface of a Viscous Fluid
    Abrashkin, A. A.
    FLUID DYNAMICS, 2008, 43 (06) : 915 - 922
  • [42] A New Unified Diffusion-Viscous-Flow Model Based on Pore-Level Studies of Tight Gas Formations
    Rahmanian, Mohammad R.
    Aguilera, Roberto
    Kantzas, Apostolos
    SPE JOURNAL, 2013, 18 (01): : 38 - 49
  • [43] The three-dimensional movement of indefinite viscous media
    Roy, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1914, 158 : 1158 - 1160
  • [44] Three-dimensional waves on the surface of a viscous fluid
    A. A. Abrashkin
    Fluid Dynamics, 2008, 43 : 915 - 922
  • [45] A three-dimensional fractal model of tamour vasculature
    Tsafnat, N
    Tsafnat, G
    Lambert, TD
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 683 - 686
  • [46] Electromagnetic eigenmodes of a three-dimensional photonic fractal
    Sakoda, K
    PHYSICAL REVIEW B, 2005, 72 (18)
  • [47] Fractal structures of three-dimensional simplicial gravity
    Hagura, H
    Tsuda, N
    Yukawa, T
    NUCLEAR PHYSICS B, 1997, : 766 - 768
  • [48] Geometric properties of three-dimensional fractal trees
    Bliss, P. M.
    Brown, D. A.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 119 - 124
  • [49] Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis
    Brandao, Rodolfo
    Dias, Eduardo O.
    Miranda, Jose A.
    PHYSICAL REVIEW FLUIDS, 2018, 3 (03):
  • [50] A study in three-dimensional flow of a viscous gas within the framework of parabolic flow models
    Borodin, AI
    Peigin, SV
    HIGH TEMPERATURE, 1996, 34 (03) : 423 - 429