Properties of the geometric phase of a de Broglie-Bohm causal quantum mechanical trajectory

被引:0
|
作者
Parmenter, R.H. [1 ]
Valentine, R.W. [1 ]
机构
[1] Department of Physics, University of Arizona, Tucson, AZ 85721, United States
关键词
Kinetics - Equations of motion - Kinetic energy - Geometry - Quantum theory;
D O I
暂无
中图分类号
学科分类号
摘要
In a manner analogous to that used to define the geometric phase of a wavefunction, one can define the geometric phase of a periodic trajectory associated with the de Broglie-Bohm causal interpretation of quantum mechanics. This phase is proportional to the action integral over the trajectory. Numerical evidence indicates that this is an adiabatic invariant, despite the fact that the equations of motion are not separable and that the effective classical Hamiltonian depends explicitly on time, two conditions excluded in the standard proof of adiabatic invariance. The associated concept of geometric frequency, proportional to the time average of the kinetic energy, can be defined for both periodic and aperiodic trajectories. Numerical evidence indicates that this also has remarkable properties.
引用
收藏
页码:7 / 14
相关论文
共 50 条
  • [41] Quantum Horava-Lifshitz cosmology in the de Broglie-Bohm interpretation
    Vicente, G. S.
    PHYSICAL REVIEW D, 2021, 104 (10)
  • [42] On the velocity of a quantum particle in the de Broglie-Bohm quantum mechanics: the case of the bouncing ball
    Feoli, A.
    Benedetto, E.
    Iannella, A. L.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (03):
  • [43] De Broglie-Bohm interpretation of a Horava-Lifshitz quantum cosmology model
    Oliveira-Neto, G.
    Martins, L. G.
    Monerat, G. A.
    Correa Silva, E. V.
    MODERN PHYSICS LETTERS A, 2018, 33 (02)
  • [44] Quantum-to-classical transition of primordial cosmological perturbations in de Broglie-Bohm quantum theory
    Pinto-Neto, Nelson
    Santos, Grasiele
    Struyve, Ward
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [45] de Broglie-Bohm analysis of a nonlinear membrane: From quantum to classical chaos
    Santos Lima, Henrique
    Paixao, Matheus M. A.
    Tsallis, Constantino
    CHAOS, 2024, 34 (02)
  • [46] Remarks on identical particles in de Broglie-Bohm theory
    Brown, HR
    Sjöqvist, E
    Bacciagaluppi, G
    PHYSICS LETTERS A, 1999, 251 (04) : 229 - 235
  • [47] Dissociation dynamics from a de Broglie-Bohm perspective
    Wang, ZS
    Darling, GR
    Holloway, S
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (22): : 10373 - 10381
  • [48] de Broglie-Bohm guidance equations for arbitrary Hamiltonians
    Struyve, Ward
    Valentini, Antony
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (03)
  • [49] Photon wave mechanics: A de Broglie-Bohm approach
    Esposito, S
    FOUNDATIONS OF PHYSICS LETTERS, 1999, 12 (06) : 533 - 545
  • [50] On a Common Misconception Regarding the de Broglie-Bohm Theory
    Passon, Oliver
    ENTROPY, 2018, 20 (06)