Existence of eigenvectors for monotone homogeneous functions

被引:0
|
作者
Gaubert, Stéphane [1 ]
Gunawardena, Jeremy [2 ]
机构
[1] INRIA, Domaine de Voluceau, 78153 Le Chesnay Cédex, France
[2] BRIMS, Hewlett-Packard Labs., Filton Road, Stoke Gifford, Bristol BS34 8QZ, United Kingdom
来源
HP Laboratories Technical Report | 1999年 / BRIMS卷 / 08期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Existence of Monotone Solutions of a Difference Equation
    Sun, Taixiang
    Xi, Hongjian
    Quan, Weizhen
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2008, 2008
  • [42] ON THE EXISTENCE OF MONOTONE OPTIMAL DECISION RULES
    KOLONKO, M
    BENZING, H
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1984, 226 : 369 - 371
  • [43] Existence of equilibria for monotone multivalued mappings
    Werner Oettli
    Dirk Schläger
    Mathematical Methods of Operations Research, 1998, 48 : 219 - 228
  • [44] ON THE EXISTENCE OF UNIQUE EIGENSETS OF MONOTONE PROCESSES
    HSIA, WS
    NATARAJAN, BR
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (02) : 213 - 218
  • [45] Monotone iterative technique for G-monotone functions
    Mcrae, FA
    Sokol, M
    DYNAMIC SYSTEMS AND APPLICATIONS, 2004, 13 (01): : 11 - 16
  • [46] On the Existence of Homogeneous Geodesics in Homogeneous Kropina Spaces
    Hosseini, M.
    Moghaddam, Hamid Reza Salimi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 457 - 469
  • [47] On the existence of homogeneous geodesic in homogeneous Finsler spaces
    Yan, Zaili
    Huang, Libing
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 264 - 267
  • [48] On the existence of homogeneous geodesics in homogeneous Riemannian manifolds
    Kowalski, O
    Szenthe, J
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 209 - 214
  • [49] EXISTENCE OF HOMOGENEOUS GEODESICS ON HOMOGENEOUS RANDERS SPACES
    Yan, Zaili
    Deng, Shaoqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02): : 481 - 493
  • [50] On the Existence of Homogeneous Geodesics in Homogeneous Riemannian Manifolds
    Oldřich Kowalski
    János Szenthe
    Geometriae Dedicata, 2000, 81 : 209 - 214