Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

被引:0
|
作者
机构
[1] Huang, Y.L.
[2] Ma, Y.
[3] Job, R.
[4] Ulyashin, A.G.
来源
Huang, Y.L. (yuelong.huang@fernuni-hagen.de) | 1600年 / American Institute of Physics Inc.卷 / 96期
关键词
Activation energy - Catalysis - Crystal growth from melt - Deep level transient spectroscopy - Doping (additives) - Hydrogen - Hydrogenation - Passivation - Secondary ion mass spectrometry - Semiconducting silicon;
D O I
暂无
中图分类号
学科分类号
摘要
In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450°C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps. © 2004 American Institute of Physics.
引用
收藏
相关论文
共 50 条
  • [41] Investigations on accelerated processes for the boron-oxygen defect in p-type Czochralski silicon
    Hamer, Phillip
    Hallam, Brett
    Abbott, Malcolm
    Chan, Catherine
    Nampalli, Nitin
    Wenham, Stuart
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 145 : 440 - 446
  • [42] Radiation hardness of high resistivity n- and p-type magnetic Czochralski silicon
    Segneri, G.
    Borrello, L.
    Boscardin, M.
    Bruzzi, M.
    Creanza, D.
    Dalla Betta, G. -F.
    De Palma, M.
    Focardi, E.
    Macchiolo, A.
    Manna, N.
    Menichelli, D.
    Messineo, A.
    Piemonte, C.
    Radicci, V.
    Ronchin, S.
    Scaringella, M.
    Sentenac, D.
    Zorzi, N.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 573 (1-2): : 283 - 286
  • [43] A novel method to enhance the gettering efficiency in p-type Czochralski silicon by a sacrificial porous silicon layer
    张彩珍
    王永顺
    汪再兴
    半导体学报, 2011, 32 (03) : 6 - 9
  • [44] Suppression of boron-oxygen defects in p-type Czochralski silicon by germanium doping
    Yu, Xuegong
    Wang, Peng
    Chen, Peng
    Li, Xiaoqiang
    Yang, Deren
    APPLIED PHYSICS LETTERS, 2010, 97 (05)
  • [45] P-TYPE DOPANT DIFFUSION CONTROL IN SILICON USING GERMANIUM
    ARONOWITZ, S
    HART, C
    MYERS, S
    HALE, P
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) : 1802 - 1806
  • [46] DIFFUSION OF ION-IMPLANTED GOLD IN P-TYPE SILICON
    COFFA, S
    CALCAGNO, L
    CAMPISANO, SU
    CALLERI, G
    FERLA, G
    JOURNAL OF APPLIED PHYSICS, 1988, 64 (11) : 6291 - 6295
  • [47] BACKGROUND DOPING DEPENDENCE OF SILICON DIFFUSION IN P-TYPE GAAS
    DEPPE, DG
    HOLONYAK, N
    KISH, FA
    BAKER, JE
    APPLIED PHYSICS LETTERS, 1987, 50 (15) : 998 - 1000
  • [48] Hydrogen enhanced thermal donor formation in p-type Czochralski silicon: application to low temperature active defect-engineering
    Ulyashin, AG
    Job, R
    Khorunzhii, IA
    Fahrner, WR
    PHYSICA B-CONDENSED MATTER, 2001, 308 : 185 - 189
  • [49] DEFECTS INDUCED IN P-TYPE SILICON BY PHOTOCATHODIC CHARGING OF HYDROGEN
    DEMIERRY, P
    ETCHEBERRY, A
    RIZK, R
    ETCHEGOIN, P
    AUCOUTURIER, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (06) : 1539 - 1546
  • [50] MODELING OF HYDROGEN DIFFUSION IN P-TYPE GAAS-ZN
    RAHBI, R
    MATHIOT, D
    CHEVALLIER, J
    GRATTEPAIN, C
    RAZEGHI, M
    PHYSICA B, 1991, 170 (1-4): : 135 - 140