Evaluation of parameters and working conditions of turbocoolers for natural gas refrigerating stations

被引:0
|
作者
VNII 'Kholodmash-Kholding' [1 ]
机构
来源
Wuji Cailiao Xuebao | / 6卷 / 34-36期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Innovations in Noise Mapping in Natural Gas Compressor Stations
    Botros, K. K.
    Hawryluk, A.
    Geerligs, J.
    Huynh, B.
    Phernambucq, R.
    PROCEEDINGS OF THE ASME INTERNATIONAL PIPELINE CONFERENCE 2010, VOL 3, 2010, : 89 - 98
  • [22] Feasibility of ORC application in natural gas compressor stations
    Bianchi, M.
    Branchini, L.
    De Pascale, A.
    Melino, F.
    Peretto, A.
    Archetti, D.
    Campana, F.
    Ferrari, T.
    Rossetti, N.
    ENERGY, 2019, 173 : 1 - 15
  • [23] Individual and garage stations for compressed natural gas supply
    Kirillov, N.G.
    Gazovaya Promyshlennost, 2001, (09): : 55 - 58
  • [24] Risk evaluation of gas transmission stations in sichuan
    Shi, Linyuan
    Zheng, Jie
    Li, Jing
    Tianranqi Gongye/Natural Gas Industry, 2004, 24 (11): : 135 - 138
  • [25] Evaluation of the Working Parameters of a Series-Hybrid Tractor under the Soil Work Conditions
    Medzevepryte, Ugne Kolete
    Makaras, Rolandas
    Lukosevicius, Vaidas
    Kersys, Arturas
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2022, 29 (01): : 45 - 50
  • [26] Effect of Inlet and Outlet Flow Conditions on Natural Gas Parameters in Supersonic Separation Process
    Yang, Yan
    Wen, Chuang
    Wang, Shuli
    Feng, Yuqing
    PLOS ONE, 2014, 9 (10):
  • [27] Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine
    Lou, Diming
    Ren, Yedi
    Li, Xiang
    Zhang, Yunhua
    Sun, Xia
    ENERGIES, 2020, 13 (18)
  • [28] A method for distributed production of liquefied natural gas at gas-distribution stations
    S. A. Burtsev
    A. P. Karpenko
    A. I. Leontiev
    High Temperature, 2016, 54 : 573 - 576
  • [29] Evaluation of influential parameters for supersonic dehydration of natural gas: Machine learning approach
    Emmanuel EOkoro
    Uyiosa Igbinedion
    Victor Aimikhe
    Samuel ESanni
    Okorie EAgwu
    Petroleum Research, 2022, (03) : 372 - 383
  • [30] Evaluation of influential parameters for supersonic dehydration of natural gas: Machine learning approach
    Okoro, Emmanuel E.
    Igbinedion, Uyiosa
    Aimikhe, Victor
    Sanni, Samuel E.
    Agwu, Okorie E.
    PETROLEUM RESEARCH, 2022, 7 (03) : 372 - 383