Structure of the Hilbert-space of the infinite-dimensional Hubbard model

被引:0
|
作者
Institut für Physik, Universität Dortmund, 44221 Dortmund, Germany [1 ]
机构
来源
Eur Phys J B | / 4卷 / 569-573期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An iterative procedure for the explicit construction of the nontrivial subspace of all symmetry-adapted configurations with non-zero weight in the ground-state of the infinity -dimensional Hubbard model is developed on the basis of a symmetrized representation of the transition operators on a sequence of Bethe-Lattices of finite depth. The relationship between these operators and the well-known mapping of the infinity -dimensional Hubbard model onto an effective impurity problem coupled to a (self-consistent) bath on non-interacting electrons is given. As an application we calculate the properties of various Hubbard stars and give estimates for the half-filled Hubbard model with up to 0.1% accuracy.
引用
收藏
相关论文
共 50 条
  • [31] ELECTRICAL-CONDUCTIVITY IN THE INFINITE-DIMENSIONAL HUBBARD-MODEL
    KHURANA, A
    PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1990 - 1990
  • [32] TRANSPORT-PROPERTIES OF THE INFINITE-DIMENSIONAL HUBBARD-MODEL
    PRUSCHKE, T
    JARRELL, M
    PHYSICA B, 1994, 199 : 217 - 218
  • [33] TRANSPORT-PROPERTIES OF THE INFINITE-DIMENSIONAL HUBBARD-MODEL
    PRUSCHKE, T
    COX, DL
    JARRELL, M
    EUROPHYSICS LETTERS, 1993, 21 (05): : 593 - 598
  • [34] Estimate of the phase transition line in the infinite-dimensional Hubbard model
    Kim, Aaram J.
    Choi, M. Y.
    Jeon, Gun Sang
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (02) : 268 - 276
  • [35] Estimate of the phase transition line in the infinite-dimensional Hubbard model
    Aaram J. Kim
    M. Y. Choi
    Gun Sang Jeon
    Journal of the Korean Physical Society, 2014, 64 : 268 - 276
  • [36] Controllability in infinite-dimensional Hilbert spaces
    Muresan, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (03) : 475 - 479
  • [37] INFINITE-DIMENSIONAL BICOMPLEX HILBERT SPACES
    Lavoie, Raphael Gervais
    Marchildon, Louis
    Rochon, Dominic
    ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (02): : 75 - 91
  • [38] NOTES ON INFINITE DETERMINANTS OF HILBERT-SPACE OPERATORS
    SIMON, B
    ADVANCES IN MATHEMATICS, 1977, 24 (03) : 244 - 273
  • [39] EVERY INFINITE-DIMENSIONAL HILBERT SPACE IS DIFFEOMORPHIC WITH ITS UNIT SPHERE
    BESSAGA, C
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1966, 14 (01): : 27 - &
  • [40] HIGHER-RANK NUMERICAL RANGE IN INFINITE-DIMENSIONAL HILBERT SPACE
    Martinez-Avendano, Ruben A.
    OPERATORS AND MATRICES, 2008, 2 (02): : 249 - 264