Random 2-SAT and unsatisfiability

被引:0
|
作者
Verhoeven, Yann [1 ]
机构
[1] LRI, Bat 490, Université Paris Sud, 91405, Orsay, France
来源
Information Processing Letters | 1999年 / 72卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
9
引用
收藏
页码:119 / 123
相关论文
共 50 条
  • [41] Solving MIN ONES 2-SAT as fast as VERTEX COVER
    Misra, Neeldhara
    Narayanaswamy, N. S.
    Raman, Venkatesh
    Shankar, Bal Sri
    THEORETICAL COMPUTER SCIENCE, 2013, 506 : 115 - 121
  • [42] A QUANTUM VERSION OF SCHONING'S ALGORITHM APPLIED TO QUANTUM 2-SAT
    Farhi, Edward
    Kimmel, Shelby
    Temme, Kristan
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (13-14) : 1212 - 1227
  • [43] Efficient Generation of Unsatisfiability Proofs and Cores in SAT
    Asin, Roberto
    Nieuwenhuis, Robert
    Oliveras, Albert
    Rodriguez-Carbonell, Euric
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2008, 5330 : 16 - 30
  • [44] Bounding the unsatisfiability threshold of random 3-SAT (vol 17, pg 108, 2000)
    Janson, S
    Stamatiou, YC
    Vamvakari, M
    RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (01) : 99 - 100
  • [45] THE THREE-STATE PERFECT PHYLOGENY PROBLEM REDUCES TO 2-SAT
    Gusfield, Dan
    Wu, Yufeng
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2009, 9 (04) : 295 - 301
  • [46] Almost 2-SAT is fixed-parameter tractable (Extended Abstract)
    Razgon, Igor
    O'Sullivan, Barry
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 551 - 562
  • [47] DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories
    Feng, Nick
    Hu, Alan J.
    Bayless, Sam
    Iqbal, Syed M.
    Trentin, Patrick
    Whalen, Mike
    Pike, Lee
    Backes, John
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT I, TACAS 2024, 2024, 14570 : 3 - 23
  • [48] New Worst-Case Upper Bound for #2-SAT and #3-SAT with the Number of Clauses as the Parameter
    Zhou, Junping
    Yin, Minghao
    Zhou, Chunguang
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 217 - 222
  • [49] Comparing the hardness of MAX 2-SAT problem instances for quantum and classical algorithms
    Mirkarimi, Puya
    Callison, Adam
    Light, Lewis
    Chancellor, Nicholas
    Kendon, Viv
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [50] Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers
    Michaelson, Dawn
    Schreiber, Dominik
    Heule, Marijn J. H.
    Kiesl-Reiter, Benjamin
    Whalen, Michael W.
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT I, TACAS 2023, 2023, 13993 : 348 - 366