Flows in two-dimensional non-autonomous phases in polycrystalline systems

被引:0
|
作者
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors
    Bao, Han
    Ding, Ruoyu
    Chen, Bei
    Xu, Quan
    Bao, Bocheng
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [22] Shrinking targets for non-autonomous systems
    Lopez, Marco Antonio
    NONLINEARITY, 2020, 33 (07) : 3568 - 3593
  • [23] PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN
    Song, Xue-Li
    Hou, Yan-Ren
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) : 991 - 1009
  • [24] A Study of Anticipatory Non-Autonomous Systems
    Hayashi, Yoshikatsu
    Spencer, Matthew C.
    Nasuto, Slawomir J.
    2013 INTERNATIONAL JOINT CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY & UBI-MEDIA COMPUTING (ICAST-UMEDIA), 2013, : 316 - 317
  • [25] STABILITY OF LINEAR NON-AUTONOMOUS SYSTEMS
    Khongtham, Yaowaluck
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (05) : 899 - 906
  • [26] ATTRACTIVITY IN NON-AUTONOMOUS SYSTEMS.
    Yoshizawa, Taro
    International Journal of Non-Linear Mechanics, 1985, 2 (5-6): : 519 - 528
  • [27] NORMAL FORM OF NON-AUTONOMOUS SYSTEMS
    KOSTIN, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1973, (08): : 693 - 696
  • [28] On the asymptotic properties of non-autonomous systems
    Shahram Saeidi
    Journal of Evolution Equations, 2010, 10 : 205 - 216
  • [29] On the asymptotic properties of non-autonomous systems
    Saeidi, Shahram
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (01) : 205 - 216
  • [30] NON-AUTONOMOUS BIFURCATION IN IMPULSIVE SYSTEMS
    Akhmet, M. U.
    Kashkynbayev, A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (74) : 1 - 23