On feasible sets defined through Chebyshev approximation

被引:0
|
作者
Guerra, Francisco
Jimenez, Miguel A.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let Z be a compact set of the real space R with at least n + 2 points; f, h1, h2: Z -&gt R continuous functions, h1, h2 strictly positive and P(x,z), x:= (x0, ..., xn)τ qq Rn+1, z qq R, a polynomial of degree at most n. Consider a feasible set M := {x qq Rn+1 | qqz qq Z, -h2(z) 1(z)}. Here it is proved the null vector 0 of Rn+1 belongs to the compact convex hull of the gradients &plusmn (1,z, ..., zn), where z qq Z are the index points in which the constraint functions are active for a given x* qq M, if and only if M is a singleton.
引用
收藏
页码:255 / 264
相关论文
共 50 条
  • [31] On worst-case approximation of feasible system sets via orthonormal basis functions
    Casini, M
    Garulli, A
    Vicino, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (01) : 96 - 101
  • [32] CHEBYSHEV APPROXIMATION OF CONTINUOUS FUNCTIONS BY A CHEBYSHEV SYSTEM OF FUNCTIONS
    GOLUB, GH
    SMITH, LB
    COMMUNICATIONS OF THE ACM, 1971, 14 (11) : 737 - &
  • [33] VARIABLE-METRIC GRADIENT PROJECTION PROCESSES IN CONVEX FEASIBLE SETS DEFINED BY NONLINEAR INEQUALITIES
    GAWANDE, M
    DUNN, JC
    APPLIED MATHEMATICS AND OPTIMIZATION, 1988, 17 (02): : 103 - 119
  • [34] CHEBYSHEV CONSTANT FOR CENTERED SETS
    FRIEDMAN, SL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) : 344 - 350
  • [35] A Note on The Convexity of Chebyshev Sets
    Narang, T. D.
    Sangeeta
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2009, 27 (01): : 59 - 63
  • [36] Convexity of Chebyshev Sets Revisited
    Deka, Konrad
    Varivoda, Marin
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (08): : 763 - 774
  • [37] Chebyshev centres and centrable sets
    Rao, TSSRK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) : 2593 - 2598
  • [38] Bregman distances and Chebyshev sets
    Bauschke, Heinz H.
    Wang, Xianfu
    Ye, Jane
    Yuan, Xiaoming
    JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 3 - 25
  • [39] Chebyshev sets in geodesic spaces
    Ariza-Ruiz, David
    Fernandez-Leon, Aurora
    Lopez-Acedo, Genaro
    Nicolae, Adriana
    JOURNAL OF APPROXIMATION THEORY, 2016, 207 : 265 - 282
  • [40] Sets with External Chebyshev Layer
    A. R. Alimov
    M. I. Karlov
    Mathematical Notes, 2001, 69 : 269 - 273