Theory of center-focus for a class of higher-degree critical points and infinite points

被引:0
|
作者
Liu, Y.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For the real planar autonomous differential system, the questions of detection between center and focus, successor function, formal series, central integration, integration factor, focal values, values of singular point and bifurcation of limit cycles for a class of higher-degree critical points and infinite points are expounded.
引用
收藏
页码:365 / 377
相关论文
共 50 条
  • [31] On Critical Circle Homeomorphisms with Infinite Number of Break Points
    Dzhalilov, Akhtam
    Noorani, Mohd Salmi Md
    Akhatkulov, Sokhobiddin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] Multiple critical points for a class of nonlinear functionals
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) : 507 - 523
  • [33] Multiple critical points for a class of nonlinear functionals
    A. Azzollini
    P. d’Avenia
    A. Pomponio
    Annali di Matematica Pura ed Applicata, 2011, 190 : 507 - 523
  • [34] Critical fixed points in class D superconductors
    Kagalovsky, Victor
    Nemirovsky, Demitry
    PHYSICAL REVIEW B, 2010, 81 (03)
  • [35] On higher-spin points and infinite distances in conformal manifolds
    Florent Baume
    José Calderón-Infante
    Journal of High Energy Physics, 2023
  • [36] On higher-spin points and infinite distances in conformal manifolds
    Baume, Florent
    Calderon-Infante, Jose
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (12)
  • [37] LIMIT CYCLES FOR A CLASS OF ELEVENTH Z12-EQUIVARIANT SYSTEMS WITHOUT INFINITE CRITICAL POINTS
    Murza, Adrian C.
    MATHEMATICAL REPORTS, 2017, 19 (02): : 209 - 223
  • [38] Limit cycles for a class of quintic Z6-equivariant systems without infinite critical points
    Alvarez, M. J.
    Labouriau, I. S.
    Murza, A. C.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) : 841 - 857
  • [39] Infinite-randomness quantum Ising critical fixed points
    Motrunich, O
    Mau, SC
    Huse, DA
    Fisher, DS
    PHYSICAL REVIEW B, 2000, 61 (02): : 1160 - 1172
  • [40] Infinite-randomness quantum critical points induced by dissipation
    Vojta, Thomas
    Kotabage, Chetan
    Hoyos, Jose A.
    PHYSICAL REVIEW B, 2009, 79 (02)