Optimization of a minienvironment design using computational fluid dynamics

被引:0
|
作者
Tannous, George A. [1 ]
机构
[1] Asyst Technologies, Inc, Fremont, United States
来源
Journal of the IES | 1997年 / 40卷 / 01期
关键词
Air quality - Clean rooms - Computational fluid dynamics - Contamination - Finite volume method - Flow of fluids - Geometry - Mathematical models - Optimization - Pressure - Semiconductor device manufacture;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses the use of a CFD (computational fluid dynamics) code for the design and optimization processes of a minienvironment mounted on a wafer process tool. The three-dimensional code was used to predict the air velocity field and pressure distribution in the minienvironment based on a finite volume approach. The geometric model consists of the minienvironment, the tool surface, and the integrated I/O Indexer interfaces. The airflow in the minienvironment (with a conceptual design configuration) was simulated. The results prompted a design change. The new design has a desirable airflow for a more effective minienvironment performance. Particular attention was paid to air recirculation zones that could potentially trap particles generated during the process and to maintaining a positive differential pressure to prevent cross contamination. CFD was shown to be an important step in the design process.
引用
收藏
页码:29 / 34
相关论文
共 50 条
  • [31] Shape optimization in ship hydrodynamics using computational fluid dynamics
    Campana, Emilio F.
    Peri, Daniele
    Tahara, Yusuke
    Stern, Frederick
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 634 - 651
  • [32] Shape Optimization of Vertical Profiler using Computational Fluid Dynamics
    Kishor, Anand
    Thangavel, C.
    Muthuvel, P.
    Sudhakar, Tata
    2015 IEEE UNDERWATER TECHNOLOGY (UT), 2015,
  • [33] Optimization of wind sail using computational fluid dynamics simulation
    Prasanth K.
    Prakash M.N.S.
    Sivaprasad K.
    International Journal of Vehicle Structures and Systems, 2021, 13 (04) : 477 - 481
  • [34] Optimization of a Cyclone Using Multiphase Flow Computational Fluid Dynamics
    Weber, Justin
    Fullmer, William
    Gel, Aytekin
    Musser, Jordan
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [35] A computational fluid dynamics simulation framework for ventricular catheter design optimization
    Weisenberg, Sofy H.
    TerMaath, Stephanie C.
    Barbier, Charlotte N.
    Hill, Judith C.
    Killeffer, James A.
    JOURNAL OF NEUROSURGERY, 2018, 129 (04) : 1067 - 1077
  • [36] Design and optimization of plasma jet nozzles based on computational fluid dynamics
    Nan Yu
    Yanni Yang
    Renaud Jourdain
    Mustapha Gourma
    Adam Bennett
    Fengzhou Fang
    The International Journal of Advanced Manufacturing Technology, 2020, 108 : 2559 - 2568
  • [37] Design and optimization of plasma jet nozzles based on computational fluid dynamics
    Yu, Nan
    Yang, Yanni
    Jourdain, Renaud
    Gourma, Mustapha
    Bennett, Adam
    Fang, Fengzhou
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (7-8): : 2559 - 2568
  • [38] Computational Fluid Dynamics-Based Multiobjective Optimization for Catalyst Design
    Cheng, Shueh-Hen
    Chang, Hsuan
    Chen, Yih-Hang
    Chen, Hsi-Jen
    Chao, Yung-Kang
    Liao, Yu-Hsiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (21) : 11079 - 11086
  • [39] Design of a Hydrokinetic Turbine Diffuser Based on Optimization and Computational Fluid Dynamics
    Rezek, T. J.
    Camacho, R. G. R.
    Filho, N. Manzanares
    Limacher, E. J.
    APPLIED OCEAN RESEARCH, 2021, 107
  • [40] Computational Fluid Dynamics (CFD) Analysis for Design Optimization of a Pharmaceutical Cleanroom
    Khankari, Kishor
    ASHRAE TRANSACTIONS 2023, VOL 129, PT 1, 2023, 129 : 429 - 436