Will the PLS criterion for order estimation work with AML and a posteriori prediction error

被引:0
|
作者
Hemerly, Elder M. [1 ]
Fragoso, Marcelo D. [1 ]
机构
[1] CTA-ITA-IEEE, Brazil
来源
Systems and Control Letters | 1990年 / 14卷 / 01期
关键词
ARMA Models - Model Order Estimation - Predictive Least Squares;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:79 / 92
相关论文
共 50 条
  • [21] A POSTERIORI ERROR ESTIMATION FOR REDUCED ORDER SOLUTIONS OF PARAMETRIZED PARABOLIC OPTIMAL CONTROL PROBLEMS
    Kaercher, Mark
    Grepl, Martin A.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (06): : 1615 - 1638
  • [22] A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements
    Ainsworth, Mark
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01): : 189 - 204
  • [23] Application of variational a-posteriori multiscale error estimation to higher-order elements
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Fuster, Daniel
    Gomez, Antonio
    Sayas, Javier
    COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 382 - 389
  • [24] Recovery strategies, a posteriori error estimation, and local error indication for second-order G/XFEM and FEM
    Bento, Murilo H. C.
    Proenca, Sergio P. B.
    Duarte, C. Armando
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (13) : 3025 - 3062
  • [25] A posteriori error estimation for nonlinear variational problems
    Repin, SI
    Xanthis, LS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (10): : 1169 - 1174
  • [26] Adaptive meshing for nanophotonicsusing a posteriori error estimation
    Svardsby, Albin J.
    Tassin, Philippe
    OPTICS EXPRESS, 2024, 32 (14): : 24592 - 24602
  • [27] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88
  • [28] Robust a posteriori error estimation for the Maxwell equations
    Cochez-Dhondt, Sarah
    Nicaise, Serge
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (25-28) : 2583 - 2595
  • [29] A posteriori error estimation in computational inverse scattering
    Beilina, L
    Johnson, C
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01): : 23 - 35
  • [30] A posteriori error estimation for partial differential equations
    Dobronets, BS
    SCIENTIFIC COMPUTING AND VALIDATED NUMERICS, 1996, 90 : 239 - 244