Monotone iterative method and adaptive finite volume method for parallel numerical simulation of submicron MOSFET devices

被引:0
|
作者
Li, Yiming [1 ,2 ,3 ]
Chen, Cheng-Kai [2 ]
Chen, Pu [2 ]
机构
[1] National Nano Device Laboratories, 1001 Ta Hsueh Rd., Hsinchu city, Hsinchu 300, Taiwan
[2] National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu city, Hsinchu 300, Taiwan
[3] P.O. Box 25-178, Hsinchu city, Hsinchu 300, Taiwan
关键词
Adaptive systems - Computer simulation - Finite volume method - Iterative methods - Parallel processing systems - Partial differential equations - Poisson equation - Program processors;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we apply our proposed early parallel adaptive computing methodology for numerical solution of semiconductor device equations with triangular meshing technique. This novel simulation based on adaptive triangular mesh, finite volume, monotone iterative, and a posteriori error estimation methods, is developed and successfully implemented on a Linux-cluster with message passing interface (MPI) library. Parallel adaptive computing with triangular mesh has its flexibility to simulate multidimensional semiconductor devices with highly complicated geometry. Our approach fully exploits the inherent parallelism of the triangular mesh finite volume as well as monotone iterative methods for semiconductor drift diffusion equations on a Linux-cluster parallel computing system. Parallel simulation results demonstrate an excellent speedup with respect to the number of processors. Benchmarks and numerical results for a submicron N-MOSFET device are also presented to show the robustness and efficiency of the method.
引用
收藏
页码:25 / 30
相关论文
共 50 条
  • [31] Monotone nonlinear finite-volume method for challenging grids
    Schneider, M.
    Flemisch, B.
    Helmig, R.
    Terekhov, K.
    Tchelepi, H.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (02) : 565 - 586
  • [32] Monotone nonlinear finite-volume method for challenging grids
    M. Schneider
    B. Flemisch
    R. Helmig
    K. Terekhov
    H. Tchelepi
    Computational Geosciences, 2018, 22 : 565 - 586
  • [33] A parallel finite volume method for aerodynamic flows
    Weatherill, N
    Sorensen, K
    Hassan, O
    Morgan, K
    COMPUTATIONAL SCIENCE-ICCS 2002, PT II, PROCEEDINGS, 2002, 2330 : 816 - 823
  • [34] Finite volume element method for monotone nonlinear elliptic problems
    Bi, Chunjia
    Lin, Yanping
    Yang, Min
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) : 1097 - 1120
  • [35] Modeling of Piezoelectric Devices With the Finite Volume Method
    Bolborici, Valentin
    Dawson, Francis P.
    Pugh, Mary C.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (07) : 1673 - 1691
  • [36] Numerical Simulation of the Gas Expansion Process in a Turboexpander Unit by the Finite Volume Method
    A. A. Sidorov
    A. K. Yastrebov
    Thermal Engineering, 2021, 68 : 604 - 611
  • [37] NUMERICAL SIMULATION OF FORGING AND SUBSEQUENT HEAT TREATMENT OF A ROD BY A FINITE VOLUME METHOD
    P. R. Ding
    D. Y. Ju
    T. Lnouc and E. de Vries( 1) MSC Japan Ltd.
    Acta Metallurgica Sinica(English Letters), 2000, (01) : 270 - 280
  • [38] Numerical Simulation of the Gas Expansion Process in a Turboexpander Unit by the Finite Volume Method
    Sidorov, A. A.
    Yastrebov, A. K.
    THERMAL ENGINEERING, 2021, 68 (08) : 604 - 611
  • [39] Numerical Simulation of Unsaturated Flow in Porous Media Using the Finite Volume Method
    Abid, Maysoon Basheer
    2012 FIRST NATIONAL CONFERENCE FOR ENGINEERING SCIENCES (FNCES), 2012,
  • [40] Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding
    van der Stelt, A. A.
    Bor, T. C.
    Geijselaers, H. J. M.
    Quak, W.
    Akkerman, R.
    Huetink, J.
    14TH INTERNATIONAL CONFERENCE ON MATERIAL FORMING ESAFORM, 2011 PROCEEDINGS, 2011, 1353 : 1290 - 1295