Efficient finite element method employing wavelet type basis functions

被引:0
|
作者
机构
[1] Castillo, Luis Emilio Garcia
[2] Sarkar, Tapan K.
[3] Palma, Magdalena Salazar
来源
Castillo, Luis Emilio Garcia | 1600年 / Publ by James & James Science Publishers Ltd, London, United Kingdom卷 / 13期
关键词
Finite element method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Hermitian splines as basis functions of the finite-element method for plotting stress trajectories
    Marchuk M.V.
    Khomyak M.M.
    Journal of Mathematical Sciences, 2010, 168 (5) : 673 - 687
  • [32] Solution of Quantum Mechanical Problems Using Finite Element Method and Parametric Basis Functions
    Chuluunbaatar O.
    Vinitsky S.I.
    Gusev A.A.
    Derbov V.L.
    Krassovitskiy P.M.
    Bulletin of the Russian Academy of Sciences: Physics, 2018, 82 (6) : 654 - 660
  • [33] Development of vector basis functions in Vector Generalized Finite Element Method for inhomogeneous domains
    Tuncer, O.
    Shanker, B.
    Kempel, L. C.
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 1960 - 1963
  • [34] Decohesion finite element with enriched basis functions for delamination
    Guiamatsia, I.
    Ankersen, J. K.
    Davies, G. A. O.
    Iannucci, L.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) : 2616 - 2624
  • [35] ON CONVEX FUNCTIONS AND THE FINITE ELEMENT METHOD
    Aguilera, Nestor E.
    Morin, Pedro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 3139 - 3157
  • [36] INFLUENCE FUNCTIONS IN FINITE ELEMENT METHOD
    KOLAR, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (1-4): : T129 - &
  • [37] BASIS OF FINITE-ELEMENT METHOD - PREFACE
    WASHIZU, K
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 302 (5-6): : R7 - R8
  • [38] BASIS OF FINITE-ELEMENT METHOD - FOREWORD
    POMERANTZ, MA
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 302 (5-6): : R5 - R5
  • [39] The Orthonormalized Generalized Finite Element Method - OGFEM: Efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions
    Sillem, A.
    Simone, A.
    Sluys, L. J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 287 : 112 - 149
  • [40] The finite element method with weighted basis functions for singularly perturbed convection-diffusion problems
    Li, XG
    Chan, CK
    Wang, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) : 773 - 789