6. Topological obstruction in the definition of non-abelian charges

被引:0
|
作者
Oh, C.H.
Soo, C.P.
机构
来源
Proceedings of the Asia Pacific Physics Conference | 1988年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Non-Abelian Braiding of Topological Edge Bands
    Long, Yang
    Wang, Zihao
    Zhang, Chen
    Xue, Haoran
    Zhao, Y. X.
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [22] Classical dynamics of particles with non-abelian gauge charges
    Holten, Jan W. van
    PHYSICS LETTERS B, 2025, 862
  • [23] Productivity of sequences in non-abelian topological groups
    Spevak, Jan
    TOPOLOGY AND ITS APPLICATIONS, 2015, 191 : 163 - 177
  • [24] Non-Abelian anyons and topological quantum computation
    Nayak, Chetan
    Simon, Steven H.
    Stern, Ady
    Freedman, Michael
    Das Sarma, Sankar
    REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 1083 - 1159
  • [25] Topological degeneracy of non-Abelian states for dummies
    Oshikawa, Masaki
    Kim, Yong Baek
    Shtengel, Kirill
    Nayak, Chetan
    Tewari, Sumanta
    ANNALS OF PHYSICS, 2007, 322 (06) : 1477 - 1498
  • [26] Black holes with Abelian and Non-Abelian charges and their impact on matter accretion flows
    Gomez, Gabriel
    Rincon, Angel
    Cruz, Norman
    ANNALS OF PHYSICS, 2023, 459
  • [27] Classical Topological Order in Abelian and Non-Abelian Generalized Height Models
    Lamberty, R. Zachary
    Papanikolaou, Stefanos
    Henley, Christopher L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (24)
  • [28] Model of chiral spin liquids with Abelian and non-Abelian topological phases
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    PHYSICAL REVIEW B, 2017, 96 (22)
  • [29] THE NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    周光召
    朱重远
    戴元本
    吴詠时
    Science China Mathematics, 1980, (01) : 40 - 60
  • [30] NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    ZHOU, GH
    CHOU, KC
    ZHU, ZU
    CHU, CY
    DAI, YB
    WU, YS
    SCIENTIA SINICA, 1980, 23 (01): : 40 - 60