Rotation-free triangular plate and shell elements

被引:0
|
作者
Oñate, Eugenio [1 ,2 ]
Zárate, Francisco [1 ]
机构
[1] Intl. Ctr. Numer. Methods in Eng., Univ. Politecnica de Catana, Gran Capitán s/n, 08034 Barcelona, Spain
[2] Intl. Ctr. Numer. Methods in Eng., Univ. Politecnica de Cataluna, Campus Norte UPC, Gran Capitán s/n, 08034 Barcelona, Spain
关键词
D O I
暂无
中图分类号
学科分类号
摘要
52
引用
收藏
页码:557 / 603
相关论文
共 50 条
  • [31] Nonlinear rotation-free three-node shell finite element formulation
    Stolarski, Henryk
    Gilmanov, Anvar
    Sotiropoulos, Fotis
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 95 (09) : 740 - 770
  • [32] Multibody dynamic analysis using a rotation-free shell element with corotational frame
    Jiabei Shi
    Zhuyong Liu
    Jiazhen Hong
    Acta Mechanica Sinica, 2018, 34 (04) : 769 - 780
  • [33] On the rotation-free and distortion-free systems
    Alamir, ASA
    OPTIK, 2003, 114 (11): : 509 - 513
  • [34] Enhanced rotation-free basic shell triangle.: Applications to sheet metal forming
    Onate, Eugenio
    Flores, Fernando G.
    Neamtu, Laurentiu
    COMPUTATIONAL PLASTICITY, 2007, 7 : 239 - +
  • [35] New rotation-free finite element shell triangle accurately using geometrical data
    Ubach, P. -A.
    Onate, E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 383 - 391
  • [36] A rotation-free shell formulation using nodal integration for static and dynamic analyses of structures
    Wang, G.
    Cui, X. Y.
    Li, G. Y.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 105 (07) : 532 - 560
  • [37] Mixed-dimensional modeling of structures with thin coatings using rotation-free elements
    Chung, Steven C.
    Steeves, Craig A.
    COMPUTERS & STRUCTURES, 2020, 231
  • [38] Rotation-free Bernstein-Bezier elements for thin plates and shells - development and validation
    Ludwig, Thomas
    Huehne, Christian
    De Lorenzis, Laura
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 348 : 500 - 534
  • [39] A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries
    Duong, Thang X.
    Roohbakhshan, Farshad
    Sauer, Roger A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 43 - 83
  • [40] A general-purpose, inelastic, rotation-free Kirchhoff-Love shell formulation for peridynamics
    Behzadinasab, Masoud
    Alaydin, Mert
    Trask, Nathaniel
    Bazilevs, Yuri
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389