Algorithms of environment understanding and obstacle detection based on multisensor data fusion

被引:0
|
作者
Zhang, Qi
Gu, Weikang
机构
来源
Jiqiren/Robot | / 20卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:104 / 110
相关论文
共 50 条
  • [41] Multisensor data fusion
    Varshney, PK
    INTELLIGENT PROBLEM SOLVING: METHODOLOGIES AND APPROACHES, PRODEEDINGS, 2000, 1821 : 1 - 3
  • [42] Multisensor Information Fusion for Condition Based Environment Monitoring
    Reyana, A.
    Vijayalakshmi, P.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01): : 1013 - 1025
  • [43] Data fusion of multisensor data
    Tang, S
    KES'2000: FOURTH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, VOLS 1 AND 2, PROCEEDINGS, 2000, : 537 - 540
  • [44] Multisensor data fusion
    Varshney, PK
    ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL, 1997, 9 (06): : 245 - 253
  • [45] Data fusion of multisensor data
    Tang, Sheng, 2000, IEEE, Piscataway, NJ, United States (02):
  • [46] Multisensor data fusion based on the neural network
    Zhang, ZL
    Lu, ZM
    Sun, SH
    ICEMI'99: FOURTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 1999, : 1019 - 1022
  • [47] Multisensor data fusion
    Grossmann, P
    GEC JOURNAL OF TECHNOLOGY, 1998, 15 (01): : 27 - 37
  • [48] Artificial Intelligence Algorithms for Multisensor Information Fusion Based on Deep Learning Algorithms
    Jiang, Lan
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [49] Obstacle Detection in the surrounding Environment of manipulators based on Point Cloud data
    Hou, Zhaolei
    Jiang, Yong
    Liu, Guodong
    Hu, Hongshuang
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1058 - 1062
  • [50] Research on Obstacle Avoidance Method for Mobile Robot Based on Multisensor Information Fusion
    Zong, Chengguo
    Ji, Zhijian
    Yu, Yan
    Shi, Hao
    SENSORS AND MATERIALS, 2020, 32 (04) : 1159 - 1170