2 ω-finite automata and sets of obstructions of their languages

被引:0
|
作者
Melnikov, B.F. [1 ]
机构
[1] Department of Mecanics and Mathematics, Simbirsk State University (Russia), L.Tolstoy str., 42, 432700, Simbirsk (Ulyanovsk), Russia
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:565 / 574
相关论文
共 50 条
  • [21] REPRESENTABILITY OF NONREGULAR LANGUAGES IN FINITE PROBABILISTIC AUTOMATA
    KNAST, R
    INFORMATION AND CONTROL, 1970, 16 (03): : 285 - &
  • [22] Minimal cover-automata for finite languages
    Câmpeanu, C
    Sântean, N
    Yu, S
    THEORETICAL COMPUTER SCIENCE, 2001, 267 (1-2) : 3 - 16
  • [23] LANGUAGES RECOGNIZED BY NONDETERMINISTIC QUANTUM FINITE AUTOMATA
    Yakaryilmaz, Abuzer
    Say, A. C. Cem
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (9-10) : 747 - 770
  • [24] Lattice-valued finite automata and their languages
    Li, YM
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIV, PROCEEDINGS: COMPUTER AND INFORMATION SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 213 - 218
  • [25] SCANNING REGULAR LANGUAGES BY DUAL FINITE AUTOMATA
    WU, PC
    WANG, FJ
    YOUNG, KR
    SIGPLAN NOTICES, 1992, 27 (04): : 12 - 16
  • [26] ITERATIONS ON FINITE SETS AND CONTRACTING CELLULAR AUTOMATA
    ROBERT, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 29 (FEB) : 393 - 412
  • [27] ONE-WAY MULTIHEAD FINITE AUTOMATA AND 2-BOUNDED LANGUAGES
    KUTYLOWSKI, M
    MATHEMATICAL SYSTEMS THEORY, 1990, 23 (02): : 107 - 139
  • [28] WORD SETS RECOGNIZABLE BY FINITE LINEAR AUTOMATA
    ECKER, K
    RATSCHEK, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (04): : T214 - T215
  • [29] On the minimality of finite automata and stream X-machines for finite languages
    Ipate, F
    COMPUTER JOURNAL, 2005, 48 (02): : 157 - 167
  • [30] On the minimality of finite automata and stream X-machines for finite languages
    Ipate, F. (fipate@ifsoft.ro), 1600, Oxford University Press (48):