On the global dynamics of a controlled viscous Burgers' equation

被引:0
|
作者
Byrnes, Ch.I.
Gilliam, D.S.
Shubov, V.I.
机构
[1] Dept. of Syst. Sci. and Mathematics, Washington University, St. Louis, MO 63130, United States
[2] Department of Mathematics, Texas Tech University, Lubbock, TX 79409, United States
来源
关键词
Number:; -; Acronym:; AFOSR; Sponsor: Air Force Office of Scientific Research;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:457 / 519
相关论文
共 50 条
  • [31] Numerical investigation of viscous effects on the nonlinear Burgers equation
    KHAN, Muhammad Imran
    RAUF, Abdul
    SHAH, Abdullah
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 529 - 539
  • [32] Asymptotic behavior for the viscous Burgers equation with a stationary source
    Chung, Jaywan
    Kwon, Ohsang
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
  • [33] Local exact Lagrangian controllability of the Burgers viscous equation
    Horsin, Thierry
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02): : 219 - 230
  • [34] Sharp bounds on enstrophy growth in the viscous Burgers equation
    Pelinovsky, Dmitry
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2147): : 3636 - 3648
  • [35] A Nonlinear Flux Approximation Scheme for the Viscous Burgers Equation
    Kumar, N.
    Boonkkamp, H. M. ten Thije
    Koren, B.
    Linke, A.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 457 - 465
  • [36] Asymptotic stability of viscous shocks in the modular Burgers equation
    Le, Uyen
    Pelinovsky, Dmitry E.
    Poullet, Pascal
    NONLINEARITY, 2021, 34 (09) : 5979 - 6016
  • [37] Chaotic dynamics of an unstable Burgers equation
    Sakaguchi, H
    PHYSICA D, 1999, 129 (1-2): : 57 - 67
  • [38] Dynamics in spectral solutions of Burgers equation
    Basto, Mario
    Semiao, Viriato
    Calheiros, Francisco
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 296 - 304
  • [39] Chaotic dynamics of an unstable Burgers equation
    Sakaguchi, Hidetsugu
    Physica D: Nonlinear Phenomena, 1999, 129 (01): : 57 - 67
  • [40] Optimal spatiotemporal reduced order modeling of the viscous Burgers equation
    LaBryer, A.
    Attar, P. J.
    Vedula, P.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2014, 79 : 40 - 52