A simple remedy for failure modes in physics informed neural networks

被引:0
|
作者
Farhani, Ghazal [1 ]
Dashtbayaz, Nima Hosseini [2 ]
Kazachek, Alexander [3 ]
Wang, Boyu [2 ,4 ]
机构
[1] Natl Res Council Canada, Automot & Surface Transportat, 800 Collip Cir, London, ON N6G 4X8, Canada
[2] Western Univ, Dept Comp Sci, Middlesex Coll, 1151 Richmond St, London, ON N6A 5B7, Canada
[3] Western Univ, Middlesex Coll, Dept Math, 1151 Richmond St, London, ON N6A 5B7, Canada
[4] Vector Inst, 661 Univ Ave,Suite 710, Toronto, ON M5G 1M1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Physics-informed neural networks; Optimization; Failure modes in PINNs;
D O I
10.1016/j.neunet.2024.106963
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-informed neural networks (PINNs) have shown promising results in solving a wide range of problems involving partial differential equations (PDEs). Nevertheless, there are several instances of the failure of PINNs when PDEs become more complex. Particularly, when PDE coefficients grow larger or PDEs become increasingly nonlinear, PINNs struggle to converge to the true solution. A noticeable discrepancy emerges in the convergence speed between the PDE loss and the initial/boundary conditions loss, leading to the inability of PINNs to effectively learn the true solutions to these PDEs. In the present work, leveraging the neural tangent kernels (NTKs), we investigate the training dynamics of PINNs. Our theoretical analysis reveals that when PINNs are trained using gradient descent with momentum (GDM), the gap in convergence rates between the two loss terms is significantly reduced, thereby enabling the learning of the exact solution. We also examine why training a model via the Adam optimizer can accelerate the convergence and reduce the effect of the mentioned discrepancy. Our numerical experiments validate that sufficiently wide networks trained with GDM and Adam yield desirable solutions for more complex PDEs.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176
  • [42] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [43] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [44] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [45] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [46] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [47] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [48] Physics Informed Piecewise Linear Neural Networks for Process Optimization
    Koksal, Ece Serenat
    Aydin, Erdal
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 174
  • [49] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [50] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    MATERIALS & DESIGN, 2023, 236