Ultrathin composite polymer electrolyte with ordered ion pathways for all-solid-state lithium-metal batteries

被引:0
|
作者
Wang, Haoran [1 ]
Cheng, Guangzeng [1 ]
Sun, Hao [1 ]
Wu, Jingyi [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266404, Peoples R China
关键词
All-solid-state batteries; Composite polymer electrolytes; Ultrathin; Low-tortuosity; CHEMISTRY;
D O I
10.1016/j.jcis.2024.12.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin yet robust solid-state electrolytes (SSEs) with efficient Li+ transport are highly desirable for realizing high-energy-density all-solid-state lithium-metal batteries (ASSLMBs). Herein, an ultrathin (10 mu m) SSE with ordered ion pathways is reported for scalable ASSLMBs production. The SSE is supported by the poly (ether sulfone) scaffold, which not only improves mechanical strength and safety capability but also enables low-tortuous Li+ transport along the inner walls of its vertically aligned microchannels. The fast and direct Li+ conduction facilitates uniform Li deposition and the scaffold-reinforced structure provides superior dendrite suppression capability, together enhancing interfacial stability with the Li metal anode. As a result, the composite electrolyte exhibits room temperature ionic conductivity up to 0.10 mS cm(-1) and Li+ transference number up to 0.51. Moreover, the LiFePO4/Li ASSLMBs achieve capacity retention of 81 % after 300 cycles at 1 C/60 degrees C and 84 % after 100 cycles at 0.1 C/room temperature. Notably, the cell is able to operate safely and exhibit excellent electrochemical performance under high temperature of 100 degrees C. The versatility of the strategy is illustrated by a demonstration of the LiNi0.8Co0.1Mn0.1O2 system.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [11] Composite Solid-State Electrolyte with Vertical Ion Transport Channels for All-Solid-State Lithium Metal Batteries
    Sun, Hao
    Cheng, Guangzeng
    Wang, Haoran
    Gao, Yanan
    Wu, Jingyi
    SMALL, 2025, 21 (03)
  • [12] Constructing a Dielectric Fluorinated Solid Electrolyte for Practically Operated All-Solid-State Lithium-Metal Batteries
    Ma, Xianda
    Ge, Shuhui
    Chen, Shuo
    Zhang, Liang
    Wang, Rui
    Yan, Jianhua
    Liu, Shujie
    Ding, Bin
    Yu, Jianyong
    ACS NANO, 2025, 19 (09) : 9367 - 9377
  • [13] An Ion-Channel-Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for All-Solid-State Lithium-Metal Batteries
    Kang, Tae Woog
    Lee, Jun-Hyeong
    Lee, Jaewoo
    Park, Jung Hyun
    Shin, Jae-Hoon
    Ju, Jong-Min
    Lee, Hajin
    Lee, Sang Uck
    Kim, Jong-Ho
    ADVANCED MATERIALS, 2023, 35 (30)
  • [14] Lithium anode interlayer design for all-solid-state lithium-metal batteries
    Zeyi Wang
    Jiale Xia
    Xiao Ji
    Yijie Liu
    Jiaxun Zhang
    Xinzi He
    Weiran Zhang
    Hongli Wan
    Chunsheng Wang
    Nature Energy, 2024, 9 : 251 - 262
  • [15] Lithium anode interlayer design for all-solid-state lithium-metal batteries
    Wang, Zeyi
    Xia, Jiale
    Ji, Xiao
    Liu, Yijie
    Zhang, Jiaxun
    He, Xinzi
    Zhang, Weiran
    Wan, Hongli
    Wang, Chunsheng
    NATURE ENERGY, 2024, 9 (03) : 251 - 262
  • [16] In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries
    Gao, Shilun
    Ma, Mengxiang
    Zhang, Youjia
    Li, Lin
    Zhu, Shuangshuang
    He, Yayue
    Yang, Dandan
    Yang, Huabin
    Cao, Peng-Fei
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (16) : 9469 - 9477
  • [17] Solid polymer electrolyte based on waterborne polyurethane for all-solid-state lithium ion batteries
    Bao, Junjie
    Tao, Can
    Yu, Ran
    Gao, Minghao
    Huang, Yiping
    Chen, Chunhua
    JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (48)
  • [18] A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries
    Lin, Yue
    Li, Jie
    Lai, Yanqing
    Yuan, Changfu
    Cheng, Yun
    Liu, Jin
    RSC ADVANCES, 2013, 3 (27): : 10722 - 10730
  • [19] Electrochemically stable and ultrathin polymer-based solid electrolytes for dendrite-free all-solid-state lithium-metal batteries
    Yu, Fenghua
    Mu, Yongbiao
    Han, Meisheng
    Liu, Jie
    Zheng, Kunxiong
    Zou, Zhiyu
    Hu, Hengyuan
    Man, Quanyan
    Li, Wenjia
    Wei, Lei
    Zeng, Lin
    Zhao, Tianshou
    MATERIALS FUTURES, 2025, 4 (01):
  • [20] Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte
    Wang, Su
    Sun, Qifang
    Peng, Wenxiu
    Ma, Yue
    Zhou, Ying
    Song, Dawei
    Zhang, Hongzhou
    Shi, Xixi
    Li, Chunliang
    Zhang, Lianqi
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 85 - 93