Quasi-Nambu-Goldstone modes in many-body scar models

被引:0
|
作者
Ren, Jie [1 ,2 ,5 ]
Wang, Yu-Peng [1 ,2 ,3 ]
Fang, Chen [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[5] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, England
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
QUANTUM; BREAKING; STATES;
D O I
10.1103/PhysRevB.110.245101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
From the quasisymmetry-group perspective [J. Ren et al., Phys. Rev. Lett. 126, 120604 (2021)], we show the universal existence of collective, coherent modes of excitations in many-body scar models in the degenerate limit, where the energy spacing in the scar tower vanishes. The number of these modes, as well as the quantum numbers carried by them, are given, not by the symmetry of the Hamiltonian, but by the quasisymmetry of the scar tower: hence the name quasi-Nambu-Goldstone modes. Based on this, we draw a concrete analogy between the paradigm of spontaneous symmetry breaking and the many-body scar physics in the degenerate limit.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Many-Body Localization: Concepts and Simple Models
    Sims, R.
    Stolz, G.
    MARKOV PROCESSES AND RELATED FIELDS, 2015, 21 (03) : 791 - 822
  • [32] Many-body localized hidden generative models
    Zhong, Weishun
    Gao, Xun
    Yelin, Susanne F.
    Najafi, Khadijeh
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [33] Many-body effects in models with superexponential interactions
    Schmelcher, Peter
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 97
  • [34] Discrete disorder models for many-body localization
    Janarek, Jakub
    Delande, Dominique
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2018, 97 (15)
  • [35] CONSTRUCTION OF SOLUABLE MODELS OF MANY-BODY PROBLEM
    SCHUTTE, D
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1973, A 28 (3-4): : 396 - 403
  • [36] Constructing quantum many-body scar Hamiltonians from Floquet automata
    Rozon, Pierre-Gabriel
    Gullans, Michael J.
    Agarwal, Kartiek
    PHYSICAL REVIEW B, 2022, 106 (18)
  • [37] Phantom energy in the nonlinear response of a quantum many-body scar state
    Yang, Kangning
    Zhang, Yicheng
    Li, Kuan-Yu
    Lin, Kuan-Yu
    Gopalakrishnan, Sarang
    Rigol, Marcos
    Lev, Benjamin L.
    SCIENCE, 2024, 385 (6713) : 1063 - 1067
  • [38] Topological many-body scar states in dimensions one, two, and three
    Ok, Seulgi
    Choo, Kenny
    Mudry, Christopher
    Castelnovo, Claudio
    Chamon, Claudio
    Neupert, Titus
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [39] Nambu-covariant many-body theory II: Self-consistent approximations
    Drissi, M.
    Rios, A.
    Barbieri, C.
    ANNALS OF PHYSICS, 2024, 469
  • [40] MANY-BODY MODES OF EXCITATION IN HEAVY-ION COLLISIONS
    OSET, E
    VICENTEVACAS, M
    NUCLEAR EQUATION OF STATE, PART A: DISCOVERY OF NUCLEAR SHOCK WAVES AND THE EOS, 1989, 216 : 273 - 281