Diverse Humanoid Robot Pose Estimation from Images Using Only Sparse Datasets

被引:0
|
作者
Heo, Seokhyeon [1 ]
Cho, Youngdae [2 ]
Park, Jeongwoo [2 ]
Cho, Seokhyun [1 ]
Tsoy, Ziya [1 ]
Lim, Hwasup [3 ]
Cha, Youngwoon [2 ]
机构
[1] Konkuk Univ, Dept Comp Sci & Engn, Seoul 05029, South Korea
[2] Konkuk Univ, Grad Sch, Dept Metaverse Convergence, Seoul 05029, South Korea
[3] Korea Inst Sci & Technol, Ctr Artificial Intelligence, Seoul 02792, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 19期
基金
新加坡国家研究基金会;
关键词
computer vision; robotics; deep learning; MARKERS;
D O I
10.3390/app14199042
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a novel dataset for humanoid robot pose estimation from images, addressing the critical need for accurate pose estimation to enhance human-robot interaction in extended reality (XR) applications. Despite the importance of this task, large-scale pose datasets for diverse humanoid robots remain scarce. To overcome this limitation, we collected sparse pose datasets for commercially available humanoid robots and augmented them through various synthetic data generation techniques, including AI-assisted image synthesis, foreground removal, and 3D character simulations. Our dataset is the first to provide full-body pose annotations for a wide range of humanoid robots exhibiting diverse motions, including side and back movements, in real-world scenarios. Furthermore, we introduce a new benchmark method for real-time full-body 2D keypoint estimation from a single image. Extensive experiments demonstrate that our extended dataset-based pose estimation approach achieves over 33.9% improvement in accuracy compared to using only sparse datasets. Additionally, our method demonstrates the real-time capability of 42 frames per second (FPS) and maintains full-body pose estimation consistency in side and back motions across 11 differently shaped humanoid robots, utilizing approximately 350 training images per robot.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Determining the robot-to-robot relative pose using range-only measurements
    Zhou, Xun S.
    Roumeliotis, Stergios I.
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 4025 - +
  • [22] POSE DETERMINATION OF KNOWN OBJECTS FROM SPARSE RANGE IMAGES
    ARCHIBALD, C
    MERRITT, C
    INTELLIGENT AUTONOMOUS SYSTEMS 2, VOLS 1 AND 2, 1989, : 185 - 195
  • [23] Mouse Pose Estimation Using Synthetic Datasets Replicating Experimental Environments
    Yokokawa, Ryudai
    Hara-Miyauchi, Chikako
    Ajioka, Itsuki
    Maeda, Shingo
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 317 - 322
  • [24] Kinematic Parameter Calibration for Humanoid Robot Using Relative Pose Measurement in Walking Motion
    Lee, Jee-eun
    Park, Jaeheung
    2019 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2019, : 712 - 717
  • [25] Estimation of Mobile Robot Pose from Optical Mouses
    Mudrova, Lenka
    Faigl, Jan
    Halgasik, Jaroslav
    Krajnik, Tomas
    RESEARCH AND EDUCATION IN ROBOTICS: EUROBOT 2010, 2011, 156 : 93 - 107
  • [26] Volume estimation from sparse planar images using deformable models
    Dept. of Med. Phys. and Bioeng., University College Hospital, London WC1E 6AJ, United Kingdom
    不详
    不详
    Image Vision Comput, 8 (559-565):
  • [27] Object Pose Estimation Using Edge Images Synthesized from Shape Information
    Moteki, Atsunori
    Saito, Hideo
    SENSORS, 2022, 22 (24)
  • [28] Volume estimation from sparse planar images using deformable models
    Ruff, CF
    Hughes, SW
    Hawkes, DJ
    IMAGE AND VISION COMPUTING, 1999, 17 (08) : 559 - 565
  • [29] Pose Estimation of Landscape Images Using DEM and Orthophotos
    Produit, Timothee
    Tuia, Devis
    Golay, Francois
    Strecha, Christoph
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 209 - 214
  • [30] POSE ESTIMATION OF A MOVING HUMANOID USING GAUSS-NEWTON OPTIMIZATION ON A MANIFOLD
    Sarkis, Michel
    Diepold, Klaus
    Hueper, Knut
    HUMANOIDS: 2007 7TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, 2007, : 228 - +