Determination of effective parameters on fragmentation using artificial neural networks

被引:0
|
作者
Tarbiat Modares Uniiversity, Iran [1 ]
不详 [2 ]
机构
来源
J Mines Met Fuels | 2009年 / 9卷 / 287-290期
关键词
Blastability index - Blasting operations - Effective parameters - Empirical method - Generalized Regression Neural Network(GRNN) - Overall costs - Rock fragmentation - Spacing ratio;
D O I
暂无
中图分类号
学科分类号
摘要
One of the basic stages in open pit mining is blasting operation in which a proper fragmentation has to be reached to optimize overall costs. Therefore, determination of effective parameters on fragmentation seems to be very important. Generally, empirical methods are used to determine these parameters. However, considering complexity of blast design, these methods are not enough efficient, hence new methods have to be applied. In this research work, using artificial neural networks technique a model was developed to determine the most effective parameters on blasting fragmentation in Chadormalu iron mine of Iran. Comparing different types of networks, a four-layer generalized regression neural network (GRNN) with an architecture 7-18-2-1 was found to be optimum. Also sensitivity analysis revealed that blastability index, delay time and blast hole diameter are the most effective parameters and burden to spacing ratio, stemming, water content and powder factor are the least effective parameters on the rock fragmentation in blasting operation.
引用
收藏
相关论文
共 50 条
  • [31] Estimation of Coal's Sorption Parameters Using Artificial Neural Networks
    Skiba, Marta
    Mlynarczuk, Mariusz
    MATERIALS, 2020, 13 (23) : 1 - 11
  • [32] Identification of minerals using artificial neural networks based on Moessbauer parameters
    Shi, Hairong
    Xiao, Yuming
    Huang, Hongbo
    Wu, Dongmin
    Ali, A. M.
    Li, Min
    Li, Shimin
    Xia, Yuanfu
    He Jishu/Nuclear Techniques, 2000, 23 (07): : 467 - 474
  • [33] On-line identification of modal parameters using artificial neural networks
    Lim, TW
    Cabell, RH
    Silcox, RJ
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1996, 118 (04): : 649 - 656
  • [34] Prediction of water quality parameters in a reservoir using artificial neural networks
    Vicente, H.
    Couto, C.
    Machado, J.
    Abelha, A.
    Neves, J.
    International Journal of Design and Nature and Ecodynamics, 2012, 7 (03): : 310 - 319
  • [35] Estimation of the RiIG-Distribution Parameters Using the Artificial Neural Networks
    Mezache, Amar
    Chalabi, Izzeddine
    2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2013), 2013, : 291 - 296
  • [36] Estimating Soil Temperature With Artificial Neural Networks Using Meteorological Parameters
    Aslay, Fulya
    Ozen, Ustun
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2013, 16 (04): : 139 - 145
  • [37] ECoPANN: A Framework for Estimating Cosmological Parameters Using Artificial Neural Networks
    Wang, Guo-Jian
    Li, Si-Yao
    Xia, Jun-Qing
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 249 (02):
  • [38] Modelling Changes in the Parameters of Treated Sewage Using Artificial Neural Networks
    Skoczko, Iwona
    Struk-Sokolowska, Joanna
    Ofman, Piotr
    ROCZNIK OCHRONA SRODOWISKA, 2017, 19 : 633 - 650
  • [39] Damage detection in beams by using artificial neural networks and dynamical parameters
    Villalba, Jesus D.
    Gomez, Ivan D.
    Laier, Jose E.
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2012, (63): : 141 - 153
  • [40] Using of Artificial Neural Networks (ANN) for Aircraft Motion Parameters Identification
    Bondarets, Anatolij
    Kreerenko, Olga
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGS, 2009, 43 : 246 - 256