On the rank range of the least-squares solutions of the matrix equation AXB=C

被引:0
|
作者
Meng, Chun-Jun [1 ]
Li, Tao-Zhen [1 ]
机构
[1] College of Mathematics and Econometrics, Hunan Univ, Changsha, Hunan 410082, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:92 / 94
相关论文
共 50 条
  • [31] Least squares solutions of the matrix equation AXB plus CYD = E with the least norm for symmetric arrowhead matrices
    Li, Hongyi
    Gao, Zongsheng
    Zhao, Di
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 719 - 724
  • [32] The least-squares solutions of inconsistent matrix equation over symmetric and antipersymmetric matrices
    Xie, DX
    Sheng, YP
    Hu, XY
    APPLIED MATHEMATICS LETTERS, 2003, 16 (04) : 589 - 598
  • [33] Least-squares problem for the quaternion matrix equation AXB+CYD=E over different constrained matrices
    Yuan, Shi-Fang
    Wang, Qing-Wen
    Zhang, Xiang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (03) : 565 - 576
  • [34] Perturbation analysis for the matrix least squares problem AXB = C
    Ling, Sitao
    Wei, Musheng
    Jia, Zhigang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 150 - 159
  • [35] TWO SPECIAL KINDS OF LEAST SQUARES SOLUTIONS FOR THE QUATERNION MATRIX EQUATION AXB+CXD = E
    Yuan, Shi-Fang
    Wang, Qing-Wen
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 257 - 274
  • [36] The reflexive solutions of the matrix equation AXB = C
    Cvetkovic-Iliic, D. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (6-7) : 897 - 902
  • [37] Ranks of solutions of the matrix equation AXB = C
    Tian, YG
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (02): : 111 - 125
  • [38] Alternating Least-Squares for Low-Rank Matrix Reconstruction
    Zachariah, Dave
    Sundin, Martin
    Jansson, Magnus
    Chatterjee, Saikat
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (04) : 231 - 234
  • [39] LEAST-SQUARES SOLUTIONS OF AN INCONSISTENT SINGULAR EQUATION AX+XB=C
    LOVASSNAGY, V
    POWERS, DL
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) : 84 - 88
  • [40] Ranks of least squares solutions of the matrix equation A X B=C
    Liu, Yong Hui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (06) : 1270 - 1278