Joining two paradigms of machine learning

被引:0
|
作者
Ortner, Ronald [1 ]
机构
[1] Informationstechnologie, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben, Austria
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3 / 6
相关论文
共 50 条
  • [21] A Comprehensive Review and a Taxonomy of Edge Machine Learning: Requirements, Paradigms, and Techniques
    Li, Wenbin
    Hacid, Hakim
    Almazrouei, Ebtesam
    Debbah, Merouane
    AI, 2023, 4 (03) : 729 - 786
  • [22] Application-oriented design of machine learning paradigms for battery science
    Wang, Ying
    NPJ COMPUTATIONAL MATERIALS, 2025, 11 (01)
  • [23] Development of a framework for the prediction of slope stability using machine learning paradigms
    Rajan, K. C.
    Aryal, Milan
    Sharma, Keshab
    Bhandary, Netra Prakash
    Pokhrel, Richa
    Acharya, Indra Prasad
    NATURAL HAZARDS, 2025, 121 (01) : 83 - 107
  • [24] Feature validity during machine learning paradigms for predicting biodiesel purity
    Moayedi, Hossein
    Aghel, Babak
    Foong, Loke Kok
    Dieu Tien Bui
    FUEL, 2020, 262 (262)
  • [25] Fog based smart healthcare: a machine learning paradigms for IoT sector
    Hanumantharaju, R.
    Shreenath, K. N.
    Sowmya, B. J.
    Srinivasa, K. G.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37299 - 37318
  • [26] PARADIGMS LOST - LEARNING-DISABILITIES AND THE NEW GHOST IN THE OLD MACHINE
    CARNINE, D
    WOODWARD, J
    JOURNAL OF LEARNING DISABILITIES, 1988, 21 (04) : 233 - &
  • [27] Machine Learning paradigms for Weed Mapping via Unmanned Aerial Vehicles
    Perez-Ortiz, M.
    Gutierrez, P. A.
    Pena, J. M.
    Torres-Sanchez, J.
    Lopez-Granados, E.
    Hervas-Martinez, C.
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [28] What conditions tone paradigms in Yukuna: Phonological and machine learning approaches
    Lemus-Serrano, Magdalena
    Allassonniere-Tang, Marc
    Dediu, Dan
    GLOSSA-A JOURNAL OF GENERAL LINGUISTICS, 2021, 6 (01):
  • [29] Fog based smart healthcare: a machine learning paradigms for IoT sector
    R. Hanumantharaju
    K. N. Shreenath
    B. J. Sowmya
    K. G. Srinivasa
    Multimedia Tools and Applications, 2022, 81 : 37299 - 37318
  • [30] Machine-learning paradigms for selecting ecologically significant input variables
    Muttil, Nitin
    Chau, Kwok-Wing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (06) : 735 - 744