Future propagation characteristics of meteorological drought to hydrological drought in the Yellow River basin

被引:1
|
作者
Huang, Xingyi [1 ]
Yang, Xiaoli [1 ]
Wu, Fan [1 ]
Zhang, Jiale [1 ]
机构
[1] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Yellow River Basin; Meteorological drought; Hydrological drought; Drought propagation; Climate change; INTERCOMPARISON PROJECT SCENARIOMIP; CLIMATE-CHANGE; PRECIPITATION; TEMPERATURE; IRRIGATION; OPERATIONS; DATASET; IMPACT; CHINA;
D O I
10.1016/j.jhydrol.2024.132443
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An in-depth understanding of drought evolution in the Yellow River Basin (YRB) is essential for effective drought prevention and water resource management. This study coupled the model data released by CMIP6 and the PCRGLOBWB model to simulate the hydrological processes in the YRB, and characterize the spatial and temporal distributions of meteorological and hydrological droughts in the period of 2021-2050 (T1 period) and 2051-2080 (T2 period). Furthermore, this study explored the propagation characteristics from meteorological droughts to hydrological droughts. The results indicate that future climate change significantly impacts meteorological-hydrological droughts and their propagation characteristics in the YRB. In T1, overall meteorological drought tends to alleviate with increasing emission scenarios. However, in T2, meteorological drought duration and severity worsen, with fewer but more severe drought events compared to T1. Hydrological drought worsens in the future and exceeds past severity, with minor differences between emissions scenarios. Additionally, the study reveals the correlation between meteorological and hydrological droughts in the basin, with an enhanced correlation in upstream regions as emission scenarios intensify, indicating a rapid hydrological response to climate change. Notably, there are significant differences in drought propagation timescales across the basin, primarily concentrated at 2-10 month scales. The effective propagation rate ranges from 37 % to 50 % in T1 for low emission scenarios, but significantly decreases across the entire basin in T2, with decreasing trends in propagation rates for all sub-basins with increasing emission scenarios. These findings enhance understanding of future drought risks in the YRB and inform relevant policy development.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Study on the propagation probability characteristics and prediction model of meteorological drought to hydrological drought in basin based on copula function
    Wang, Huiliang
    Zhu, Yujia
    Qin, Tianling
    Zhang, Xiangyang
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [32] Characteristics of the transmission from meteorological drought to hydrological drought in the Xiangjiang River Basin of China using Copula function
    Long Y.
    Huang C.
    Li Z.
    Wei Y.
    Song X.
    Huang Z.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (21): : 66 - 78
  • [33] Meteorological and Hydrological Drought Risks under Future Climate and Land-Use-Change Scenarios in the Yellow River Basin
    Li, Yunyun
    Huang, Yi
    Fan, Jingjing
    Zhang, Hongxue
    Li, Yanchun
    Wang, Xuemei
    Deng, Qian
    ATMOSPHERE, 2023, 14 (11)
  • [34] Propagation characteristics from meteorological drought to agricultural drought over the Heihe River Basin, Northwest China
    Bai, Miao
    Li, Zhanling
    Huo, Pengying
    Wang, Jiawen
    Li, Zhanjie
    JOURNAL OF ARID LAND, 2023, 15 (05) : 523 - 544
  • [35] METEOROLOGICAL AND HYDROLOGICAL DROUGHT IN RARITAN RIVER BASIN IN NEW JERSEY
    LIU, CS
    SNOW, WB
    MECHANICAL ENGINEERING, 1969, 91 (09) : 79 - &
  • [36] Anthropogenic drought in the Yellow River basin: Multifaceted and weakening connections between meteorological and hydrological droughts
    Wang, Yaping
    Wang, Shuai
    Chen, Yanqiang
    Wang, Fei
    Liu, Yanxu
    Zhao, Wenwu
    JOURNAL OF HYDROLOGY, 2023, 619
  • [37] Propagation characteristics from meteorological drought to agricultural drought over the Heihe River Basin, Northwest China
    BAI Miao
    LI Zhanling
    HUO Pengying
    WANG Jiawen
    LI Zhanjie
    JournalofAridLand, 2023, 15 (05) : 523 - 544
  • [38] Propagation characteristics from meteorological drought to agricultural drought over the Heihe River Basin, Northwest China
    Miao Bai
    Zhanling Li
    Pengying Huo
    Jiawen Wang
    Zhanjie Li
    Journal of Arid Land, 2023, 15 : 523 - 544
  • [39] Drought Dynamics in the Nile River Basin: Meteorological, Agricultural, and Groundwater Drought Propagation
    Nigatu, Zemede M.
    You, Wei
    Melesse, Assefa M.
    REMOTE SENSING, 2024, 16 (05)
  • [40] The dynamic change of propagation from meteorological drought to hydrological drought at the basin scale: A case study from the Weihe River Basin, China
    Zhao, Panpan
    Xie, Bingbo
    Huang, Xudong
    Qu, Bo
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10