Future propagation characteristics of meteorological drought to hydrological drought in the Yellow River basin

被引:1
|
作者
Huang, Xingyi [1 ]
Yang, Xiaoli [1 ]
Wu, Fan [1 ]
Zhang, Jiale [1 ]
机构
[1] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Yellow River Basin; Meteorological drought; Hydrological drought; Drought propagation; Climate change; INTERCOMPARISON PROJECT SCENARIOMIP; CLIMATE-CHANGE; PRECIPITATION; TEMPERATURE; IRRIGATION; OPERATIONS; DATASET; IMPACT; CHINA;
D O I
10.1016/j.jhydrol.2024.132443
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An in-depth understanding of drought evolution in the Yellow River Basin (YRB) is essential for effective drought prevention and water resource management. This study coupled the model data released by CMIP6 and the PCRGLOBWB model to simulate the hydrological processes in the YRB, and characterize the spatial and temporal distributions of meteorological and hydrological droughts in the period of 2021-2050 (T1 period) and 2051-2080 (T2 period). Furthermore, this study explored the propagation characteristics from meteorological droughts to hydrological droughts. The results indicate that future climate change significantly impacts meteorological-hydrological droughts and their propagation characteristics in the YRB. In T1, overall meteorological drought tends to alleviate with increasing emission scenarios. However, in T2, meteorological drought duration and severity worsen, with fewer but more severe drought events compared to T1. Hydrological drought worsens in the future and exceeds past severity, with minor differences between emissions scenarios. Additionally, the study reveals the correlation between meteorological and hydrological droughts in the basin, with an enhanced correlation in upstream regions as emission scenarios intensify, indicating a rapid hydrological response to climate change. Notably, there are significant differences in drought propagation timescales across the basin, primarily concentrated at 2-10 month scales. The effective propagation rate ranges from 37 % to 50 % in T1 for low emission scenarios, but significantly decreases across the entire basin in T2, with decreasing trends in propagation rates for all sub-basins with increasing emission scenarios. These findings enhance understanding of future drought risks in the YRB and inform relevant policy development.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spatio-temporal characteristics and propagation relationship of meteorological drought and hydrological drought in the Yellow River Basin
    Zheng L.
    Liu Y.
    Ren L.
    Zhu Y.
    Yin H.
    Yuan F.
    Zhang L.
    Water Resources Protection, 2022, 38 (03) : 87 - 95
  • [2] Characteristics of Propagation From Meteorological Drought to Hydrological Drought in the Pearl River Basin
    Zhou, Zhaoqiang
    Shi, Haiyun
    Fu, Qiang
    Ding, Yibo
    Li, Tianxiao
    Wang, Yao
    Liu, Suning
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (04)
  • [3] Characteristics and risk analysis of drought propagation from meteorological drought to hydrological drought in Luanhe River Basin
    Zhang X.
    Xu Y.
    Hao F.
    Hao Z.
    Shuili Xuebao/Journal of Hydraulic Engineering, 2022, 53 (02): : 165 - 175
  • [4] The changing characteristics of propagation time from meteorological drought to hydrological drought in the Yangtze River basin, China
    Zhang, Xiaoyu
    She, Dunxian
    Xia, Jun
    Zhang, Liping
    Deng, Cuiling
    Liu, Zheqiong
    ATMOSPHERIC RESEARCH, 2023, 290
  • [5] Human activities impact the propagation from meteorological to hydrological drought in the Yellow River Basin, China
    Zhang, Qi
    Miao, Chiyuan
    Guo, Xiaoying
    Gou, Jiaojiao
    Su, Ting
    JOURNAL OF HYDROLOGY, 2023, 623
  • [6] Propagation characteristics of meteorological drought to hydrological drought in China
    Luo, Ding
    Yang, Xiaoli
    Xie, Lingfeng
    Ye, Zhoubing
    Ren, Liliang
    Zhang, Linyan
    Wu, Fan
    Jiao, Donglai
    JOURNAL OF HYDROLOGY, 2025, 656
  • [7] Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China
    Wang, Fei
    Wang, Zongmin
    Yang, Haibo
    Di, Danyang
    Zhao, Yong
    Liang, Qiuhua
    Hussain, Zafar
    JOURNAL OF HYDROLOGY, 2020, 584
  • [8] Meteorological Drought, Hydrological Drought, and NDVI in the Heihe River Basin, Northwest China: Evolution and Propagation
    Zhong, Fanglei
    Cheng, Qingping
    Wang, Ping
    ADVANCES IN METEOROLOGY, 2020, 2020
  • [9] The changing characteristics of propagation time from meteorological drought to hydrological drought in a semi-arid river basin in India
    Gupta, Ajay
    Jain, Manoj Kumar
    Pandey, Rajendra Prasad
    HYDROLOGICAL PROCESSES, 2024, 38 (08)
  • [10] Insights from CMIP6 SSP scenarios for future characteristics of propagation from meteorological drought to hydrological drought in the Pearl River Basin
    Zhou, Zhaoqiang
    Ding, Yibo
    Fu, Qiang
    Wang, Can
    Wang, Yao
    Cai, Hejiang
    Liu, Suning
    Huang, Shengzhi
    Shi, Haiyun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 899