Laser powder bed fusion process optimization of CoCrMo alloy assisted by machine-learning

被引:0
|
作者
Li, Haoqing [1 ]
Song, Bao [1 ]
Wang, Yizhen [2 ]
Zhang, Jingrui [1 ]
Zhao, Weihong [3 ]
Fang, Xiaoying [4 ,5 ]
机构
[1] Ludong Univ, Sch Transportat, Yantai 264011, Peoples R China
[2] Yantai Dongxing Magnet Mat Inc, Yantai 265500, Peoples R China
[3] Yantai Vocat Coll Culture & Tourism, Yantai 264003, Peoples R China
[4] Shandong Univ Technol, Sch Mech Engn, Zibo 255049, Peoples R China
[5] Shandong Univ Technol, Inst Addit Mfg, Zibo 255049, Peoples R China
关键词
Laser power bed fusion; Machine learning; relative density; Surface roughness; MECHANICAL-PROPERTIES; PART DISTORTION; PREDICTION; POROSITY; REGRESSION; ALSI10MG; 316L;
D O I
10.1016/j.jmrt.2024.10.075
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gaussian process regression (GPR) model of machine learning method was employed to identify the optimal process window for high-performance CoCrMo alloy in laser powder bed fusion (LPBF), considering density (>= 99%) and surface roughness (<= 7 mu m) as key parameters. Additionally, the study examined the impact of LPBF parameters on morphology and distribution of defect and surface roughness. Results revealed a tongue-shaped optimal process window, with scanning speed having a greater influence on density than laser power. High laser power reduced surface roughness, and a combination of medium-to-high laser power (160-340 W) and moderate scanning speed (600-1500 mm/s) achieved low surface roughness (Ra <= 7 mu m). The mean absolute error confirmed the reliability of the optimized process window predicted by GPR.
引用
收藏
页码:3901 / 3910
页数:10
相关论文
共 50 条
  • [21] Laser Powder Bed Fusion Parameter Selection via Machine-Learning-Augmented Process Modeling
    Srinivasan, Sandeep
    Swick, Brennan
    Groeber, Michael A.
    JOM, 2020, 72 (12) : 4393 - 4403
  • [22] Laser Powder Bed Fusion Parameter Selection via Machine-Learning-Augmented Process Modeling
    Sandeep Srinivasan
    Brennan Swick
    Michael A. Groeber
    JOM, 2020, 72 : 4393 - 4403
  • [23] Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718
    Wen, Yaojie
    Zhang, Baicheng
    Narayan, Ramasubramanian Lakshmi
    Wang, Pei
    Song, Xu
    Zhao, Hao
    Ramamurty, Upadrasta
    Qu, Xuanhui
    ADDITIVE MANUFACTURING, 2021, 40
  • [24] A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process
    Gu, Zhaochen
    Sharma, Shashank
    Riley, Daniel A.
    Pantawane, Mangesh, V
    Joshi, Sameehan S.
    Fu, Song
    Dahotre, Narendra B.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) : 3341 - 3363
  • [25] Machine learning-assisted acoustic emission monitoring for track formability prediction of laser powder bed fusion
    Wang, Haijie
    Zhang, Saifan
    Li, Bo
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [26] A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process
    Zhaochen Gu
    Shashank Sharma
    Daniel A. Riley
    Mangesh V. Pantawane
    Sameehan S. Joshi
    Song Fu
    Narendra B. Dahotre
    Journal of Intelligent Manufacturing, 2023, 34 : 3341 - 3363
  • [27] Anomaly detection in laser powder bed fusion using machine learning: A review
    Sahar, Tayyaba
    Rauf, Muhammad
    Murtaza, Ahmar
    Khan, Lehar Asip
    Ayub, Hasan
    Jameel, Syed Muslim
    Ul Ahad, Inam
    RESULTS IN ENGINEERING, 2023, 17
  • [28] Optimization of Laser Powder Bed Fusion Process for Forming Porous Ta Scaffold
    Gao, Lin
    Wang, Yikai
    Qin, Xiao
    Lv, Naixin
    Tong, Zhiqiang
    Sun, Changning
    Li, Dichen
    METALS, 2023, 13 (10)
  • [29] Designing materials by laser powder bed fusion with machine learning-driven bi-objective optimization
    Kononenko, Denys Y.
    Chernyavsky, Dmitry
    King, Wayne E.
    Hufenbach, Julia Kristin
    Brink, Jeroen van den
    Kosiba, Konrad
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 6802 - 6811
  • [30] Laser Powder Bed Fusion Process Parameters' Optimization for Fabrication of Dense IN 625
    Paraschiv, Alexandru
    Matache, Gheorghe
    Condruz, Mihaela Raluca
    Frigioescu, Tiberius Florian
    Pambaguian, Laurent
    MATERIALS, 2022, 15 (16)