Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education

被引:7
|
作者
Xiang, Huijing [1 ]
Peng, Lin [1 ,2 ]
Yang, Qiuxiang [1 ]
Wang, Zhong Lin [1 ,3 ]
Cao, Xia [1 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[2] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
[3] Guangzhou Inst Blue Energy, Guangzhou 510555, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 48期
基金
中国国家自然科学基金;
关键词
CHARGE-DENSITY; NETWORKS; CELL;
D O I
10.1126/sciadv.ads2291
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Triboelectric nanogenerator (TENG) has become a promising option for high-entropy energy harvesting and self-powered sensors because of their ability to combine the effects of contact electrification and electrostatic induction to effectively convert mechanical energy into electric power or signals. Here, the theoretical origin of TENG, strategies for high-performance TENG, and its applications in high-entropy energy, self-powered sensors, and blue energy are comprehensively introduced on the basis of the fundamental science and principle of TENG. Besides, a series of work in popular science education for TENG that includes numerous scientific and technological products from our science education base, Maxwell Science+, is emphatically introduced. This topic provides an angle and notable insights into the development of TENG.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator
    Li, Congju
    Yin, Yingying
    Wang, Bin
    Zhou, Tao
    Wang, Jiaona
    Luo, Jianjun
    Tang, Wei
    Cao, Ran
    Yuan, Zuqing
    Li, Nianwu
    Du, Xinyu
    Wang, Chunru
    Zhao, Shuyu
    Liu, Yuebo
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (10) : 10439 - 10445
  • [32] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [33] Self-powered environmental monitoring via a triboelectric nanogenerator
    Chang, Austin
    Uy, Cameron
    Xiao, Xiao
    Chen, Jun
    NANO ENERGY, 2022, 98
  • [34] A method of measuring weak-charge of self-powered sensors based on triboelectric nanogenerator
    Lei, Wenqian
    Lu, Shan
    Wang, Qi
    Yuan, Pengfei
    Yu, Hua
    NANO ENERGY, 2022, 95
  • [35] Machine learning-assisted triboelectric nanogenerator-based self-powered sensors
    Zhang, Renyun
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (04):
  • [36] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [37] Advances and prospects of triboelectric nanogenerator for self-powered system
    An, Xuyao
    Wang, Chunnan
    Shao, Ruomei
    Sun, Shuqing
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2021, 12 (03) : 233 - 255
  • [38] Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
    Zhang, Hulin
    Yang, Ya
    Su, Yuanjie
    Chen, Jun
    Hu, Chenguo
    Wu, Zhenkun
    Liu, Yan
    Wong, Ching Ping
    Bando, Yoshio
    Wang, Zhong Lin
    NANO ENERGY, 2013, 2 (05) : 693 - 701
  • [39] A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Wu, Fan
    Li, Congju
    Yin, Yingying
    Cao, Ran
    Li, Hui
    Zhang, Xiuling
    Zhao, Shuyu
    Wang, Jiaona
    Wang, Bin
    Xing, Yi
    Du, Xinyu
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01):
  • [40] An Innovative Concept: Free Energy Harvesting Through Self-Powered Triboelectric Nanogenerator
    Hussain, Izhar
    Khan, Saeed Ahmed
    Lakho, Shamsuddin
    Shah, Madad Ali
    Ali, Ahmed
    Altameem, Torki
    Fouad, H.
    Akhtar, M. S.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (11) : 1844 - 1849