Direct numerical simulation of turbulent flow over a wall-mounted cube placed inside a channel

被引:0
|
作者
Khan, Basheer A. [1 ]
Saha, Arun K. [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mech Engn, Kanpur 208016, India
关键词
Cube; Horseshoe vortex; Separating shear layer; DNS; SEPARATED SHEAR-LAYER; HEAT-TRANSFER; SQUARE CYLINDER; HORSESHOE VORTEX; WAKE; LAMINAR;
D O I
10.1016/j.ijheatfluidflow.2024.109708
中图分类号
O414.1 [热力学];
学科分类号
摘要
Direct numerical simulation (DNS) of a developing flow over a wall-mounted cube placed in a channel been carried out at five different Reynolds numbers (ReH) ranging from 500 to 5000 (based on the cube size and average streamwise velocity). The governing equations have been discretized using second-order spatial and temporal schemes. The influence of Reynolds number on separating shear layer transition caused by Kelvin-Helmholtz (KH) instabilities and the horseshoe vortices is addressed. We examine the topological characteristics of flow separation and reattachment phenomena at different Reynolds numbers and observe that the number of nodes and saddle points increases as the Reynolds number increases, resulting in the formation additional recirculation regions. A large-scale K & aacute;rm & aacute;n vortex shedding is clearly discerned at ReH >= 1000, frequency of which is found to drop with increasing Reynolds number. The analysis of turbulent kinetic energy production uncovers the presence of negative turbulence production, especially over the top/side surfaces well as in the horseshoe vortex regime, which diminishes as the Reynolds number increases. Finally, the effect of the Reynolds number on the mean and fluctuating components of wall-shear stresses on each surface of cube is discussed, and the results demonstrate that the Kelvin-Helmholtz rolls contribute significantly to augmentation of the wall-shear stresses, particularly on the top and side surfaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] DSMC SIMULATION OF RAREFIED GAS FLOW OVER A WALL MOUNTED CUBE
    Nabapure, Deepak
    Murthy, Ram Chandra
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 2, 2019,
  • [42] Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes
    Meinders, ER
    Hanjalic, K
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1999, 20 (03) : 255 - 267
  • [43] Numerical simulation and verification of the flow around a surface mounted cubic body placed in a fully developed turbulent channel flow
    Frank, W
    COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS IX, 1999, : 213 - 222
  • [44] Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube
    Liakos, Anastasios
    Malamataris, Nikolaos A.
    PHYSICS OF FLUIDS, 2014, 26 (05)
  • [45] Experimental study of the turbulent flow around a single wall-mounted cube exposed to a cross-flow and an impinging jet
    Masip, Yunesky
    Rivas, Alejandro
    Larraona, Gorka S.
    Anton, Raul
    Carlos Ramos, Juan
    Moshfegh, Bahram
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2012, 38 : 50 - 71
  • [46] Numerical simulation of a turbulent flow in a channel with surface mounted cubes
    Verstappen, RWCP
    Veldman, AEP
    APPLIED SCIENTIFIC RESEARCH, 1998, 59 (04): : 395 - 408
  • [47] Numerical Simulation of a Turbulent Flow in a Channel with Surface Mounted Cubes
    R.W.C.P. Verstappen
    A.E.P. Veldman
    Applied Scientific Research, 1997, 59 (4) : 395 - 408
  • [48] Direct Numerical Simulation of a Fully Developed Turbulent Flow over a Wavy Wall
    P. Cherukat
    Y. Na
    T.J. Hanratty
    J.B. McLaughlin
    Theoretical and Computational Fluid Dynamics, 1998, 11 : 109 - 134
  • [49] Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large eddy simulation
    Niceno, B
    Dronkers, ADT
    Hanjalic, K
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2002, 23 (02) : 173 - 185
  • [50] Direct numerical simulation of a fully developed turbulent flow over a wavy wall
    Cherukat, P
    Na, Y
    Hanratty, TJ
    McLaughlin, JB
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1998, 11 (02) : 109 - 134