Privacy-Enhanced and Efficient Federated Knowledge Transfer Framework in IoT

被引:0
|
作者
Pan, Yanghe [1 ]
Su, Zhou [1 ]
Wang, Yuntao [1 ]
Li, Ruidong [2 ]
Wu, Yuan [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Cyber Sci & Engn, Xian 710049, Peoples R China
[2] Kanazawa Univ, Inst Sci & Engn, Kanazawa 9201192, Japan
[3] Univ Macau, Fac Sci & Technol, Taipa, Macau, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 23期
关键词
Internet of Things; Data models; Training; Privacy; Knowledge transfer; Data privacy; Predictive models; Differential privacy; federated learning (FL); Internet of Things (IoT); knowledge transfer; MEMBERSHIP INFERENCE ATTACKS;
D O I
10.1109/JIOT.2024.3439599
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) has gained widespread adoption in Internet of Things (IoT) applications, promoting the evolution of IoT toward Artificial Intelligence of Things (AIoT). However, IoT devices are still vulnerable to various privacy inference attacks in FL. While current solutions aim to protect the privacy of devices during model training, the published model is still at risk from external privacy attacks during model deployment. To address the privacy concerns throughout the entire FL lifecycle, this article proposes a privacy-enhanced and efficient federated knowledge transfer framework for IoT, named PEFKT, which integrates the knowledge transfer method and local differential privacy (LDP) mechanism. In PEFKT, we devise a data diversity-driven grouping strategy to tackle the non-independent and identically distributed (non-IID) issue in IoT. Additionally, we design a quality-aware soft-label aggregation algorithm to facilitate effective knowledge transfer, thereby improving the performance of the student model. Finally, we provide rigorous privacy analysis and validate the feasibility and effectiveness of PEFKT through extensive experiments on real data sets.
引用
收藏
页码:37630 / 37644
页数:15
相关论文
共 50 条
  • [31] An Efficient Federated Learning Framework for Privacy-Preserving Data Aggregation in IoT
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 385 - 391
  • [32] PEFL: A Privacy-Enhanced Federated Learning Scheme for Big Data Analytics
    Zhang, Jiale
    Chen, Bing
    Yu, Shui
    Deng, Hai
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [33] FIND: Privacy-Enhanced Federated Learning for Intelligent Fake News Detection
    Lian, Zhuotao
    Zhang, Chen
    Su, Chunhua
    Dharejo, Fayaz Ali
    Almutiq, Mutiq
    Memon, Muhammad Hammad
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (04) : 5005 - 5014
  • [34] A privacy-enhanced framework with deep learning for botnet detection
    Wu, Guangli
    Wang, Xingyue
    CYBERSECURITY, 2025, 8 (01):
  • [35] FedComm: A Privacy-Enhanced and Efficient Authentication Protocol for Federated Learning in Vehicular Ad-Hoc Networks
    Yuan, Xiaohan
    Liu, Jiqiang
    Wang, Bin
    Wang, Wei
    Wang, Bin
    Li, Tao
    Ma, Xiaobo
    Pedrycz, Witold
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 777 - 792
  • [36] Privacy-Enhanced Federated WiFi Sensing for Health Monitoring in Internet of Things
    Lian, Zhuotao
    Zeng, Qingkui
    Liu, Zhusen
    Wang, Haoda
    Ma, Chuan
    Meng, Weizhi
    Su, Chunhua
    Sakurai, Kouichi
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (03): : 2994 - 3002
  • [37] Privacy-Enhanced Federated GNN Inference Against Adversarial Example Attack
    He, Guanghui
    Ren, Yanli
    Jiang, Jingyuan
    Feng, Guorui
    Zhang, Xinpeng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [38] Privacy-Enhanced Data Fusion for Federated Learning Empowered Internet of Things
    Lin, Qingxin
    Xu, Kuai
    Huang, Yikun
    Yu, Feng
    Wang, Xiaoding
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [39] PODE: privacy-enhanced distributed federated learning approach for origindestination estimation
    Abbas, Sidra
    Sampedro, Gabriel Avelino
    Almadhor, Ahmad
    Abisado, Mideth
    Marzougui, Mehrez
    Kim, Tai-hoon
    Alasiry, Areej
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [40] VFFG: Verifiable Privacy-Enhanced Federated Fine-Tuning for GPT Service
    Bian, Mingyun
    Ren, Yanli
    He, Guanghui
    Feng, Guorui
    Zhang, Xinpeng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,