Additional Look into GAN-based Augmentation for Deep Learning COVID-19 Image Classification

被引:0
|
作者
Fedoruk O. [1 ]
Klimaszewski K. [1 ]
Ogonowski A. [1 ]
Kruk M. [2 ]
机构
[1] Department of Complex Systems, National Centre for Nuclear Research, Otwock, Świerk
[2] Institute of Information Technology, Warsaw University of Life Sciences, SGGW, Warsaw
来源
Machine Graphics and Vision | 2023年 / 32卷 / 3-4期
关键词
computer vision; deep learning; generative adversarial networks; image classification; medical imaging;
D O I
10.22630/MGV.2023.32.3.6
中图分类号
学科分类号
摘要
Data augmentation is a popular approach to overcome the insufficiency of training data for medical imaging. Classical augmentation is based on modification (rotations, shears, brightness changes, etc.) of the images from the original dataset. Another possible approach is the usage of Generative Adversarial Networks (GAN). This work is a continuation of the previous research where we trained StyleGAN2-ADA by Nvidia on the limited COVID-19 chest X-ray image dataset. In this paper, we study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples. Two datasets are considered, one with 1000 images per class (4000 images in total) and the second with 500 images per class (2000 images in total). We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems. We compare the quality of the GAN-based augmentation approach to two different approaches (classical augmentation and no augmentation at all) by employing transfer learning-based classification of COVID-19 chest X-ray images. The results are quantified using different classification quality metrics and compared to the results from the previous article and literature. The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets. The correlation between the size of the original dataset and the quality of classification is visible independently from the augmentation approach. © 2023 Institute of Information Technology, Warsaw University of Life Sciences - SGGW. All rights reserved.
引用
收藏
页码:108 / 124
页数:16
相关论文
共 50 条
  • [31] A deep learning computational approach for the classification of COVID-19 virus
    Perepi, Rajarajeswari
    Santhi, K.
    Chattopadhyay, Pratik
    Beg, Anwar O.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (03): : 786 - 795
  • [32] A Wide & Deep Learning Approach for Covid-19 Tweet Classification
    Valdes-Chavez, Alberto
    Roberto Lopez-Santillan, J.
    Carlos Gonzalez-Gurrola, L.
    Ramirez-Alonso, Graciela
    Montes-y-Gomez, Manuel
    PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 225 - 234
  • [33] Deep stacked ensemble learning model for COVID-19 classification
    Madhu, G.
    Bharadwaj, B. Lalith
    Boddeda, Rohit
    Vardhan, Sai
    Kautish, K. Sandeep
    Alnowibet, Khalid
    Alrasheedi, Adel F.
    Mohamed, Ali Wagdy
    Computers, Materials and Continua, 2022, 70 (03): : 5467 - 5486
  • [34] Deep Stacked Ensemble Learning Model for COVID-19 Classification
    Madhu, G.
    Bharadwaj, B. Lalith
    Boddeda, Rohit
    Vardhan, Sai
    Kautish, K. Sandeep
    Alnowibet, Khalid
    Alrasheedi, Adel F.
    Mohamed, Ali Wagdy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5467 - 5486
  • [35] Ensemble Deep Learning Derived from Transfer Learning for Classification of COVID-19 Patients on Hybrid Deep-Learning-Based Lung Segmentation: A Data Augmentation and Balancing Framework
    Dubey, Arun Kumar
    Chabert, Gian Luca
    Carriero, Alessandro
    Pasche, Alessio
    Danna, Pietro S. C.
    Agarwal, Sushant
    Mohanty, Lopamudra
    Sharma, Neeraj
    Yadav, Sarita
    Jain, Achin
    Kumar, Ashish
    Kalra, Mannudeep K.
    Sobel, David W.
    Laird, John R.
    Singh, Inder M.
    Singh, Narpinder
    Tsoulfas, George
    Fouda, Mostafa M.
    Alizad, Azra
    Kitas, George D.
    Khanna, Narendra N.
    Viskovic, Klaudija
    Kukuljan, Melita
    Al-Maini, Mustafa
    El-Baz, Ayman
    Saba, Luca
    Suri, Jasjit S.
    DIAGNOSTICS, 2023, 13 (11)
  • [36] Research on Classification of COVID-19 Chest X-Ray Image Modal Feature Fusion Based on Deep Learning
    Ji, Dongsheng
    Zhang, Zhujun
    Zhao, Yanzhong
    Zhao, Qianchuan
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [37] A deep learning-based COVID-19 classification from chest X-ray image: case study
    Appasami, G.
    Nickolas, S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (18-20): : 3767 - 3777
  • [38] A deep learning-based COVID-19 classification from chest X-ray image: case study
    G. Appasami
    S. Nickolas
    The European Physical Journal Special Topics, 2022, 231 : 3767 - 3777
  • [39] Diagnosing COVID-19 from CT Image of Lung Segmentation & Classification with Deep Learning Based on Convolutional Neural Networks
    K. Sita Kumari
    Sarita Samal
    Ruby Mishra
    Gunashekhar Madiraju
    M. Nazargi Mahabob
    Anil Bangalore Shivappa
    Wireless Personal Communications, 2022, 127 (3) : 2483 - 2499
  • [40] Diagnosing COVID-19 from CT Image of Lung Segmentation & Classification with Deep Learning Based on Convolutional Neural Networks
    Kumari, K. Sita
    Samal, Sarita
    Mishra, Ruby
    Madiraju, Gunashekhar
    Mahabob, M. Nazargi
    Shivappa, Anil Bangalore
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 127 (03) : 2483 - 2499