Immersion cooling innovations and critical hurdles in Li-ion battery cooling for future electric vehicles

被引:1
|
作者
Wahab, Abdul [1 ,2 ]
Najmi, Aezid-Ul-Hassan [1 ,2 ]
Senobar, Hossein [1 ]
Amjady, Nima [3 ]
Kemper, Hans [2 ]
Khayyam, Hamid [1 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3083, Australia
[2] FH Aachen Univ Appl Sci, Fac Aerosp Engn, D-52064 Aachen, Germany
[3] Federat Univ Australia, Ctr New Energy Transit Res CfNETR, Ballarat, Vic 3350, Australia
来源
关键词
Battery thermal management systems; Battery energy storage; Electric vehicles; Immersion cooling; Li-ion batteries; Thermal runaway; AI-driven batteries; Machine learning-based battery technologies; Predictive analytics; THERMAL MANAGEMENT-SYSTEM; INTELLIGENT ENERGY MANAGEMENT; HEAT-TRANSFER CHARACTERISTICS; LOW-TEMPERATURE PERFORMANCE; STATE ESTIMATION METHODS; AC DIELECTRIC STRENGTH; PHASE-CHANGE MATERIAL; FAILURE MECHANISMS; AGING MECHANISMS; CYCLE LIFE;
D O I
10.1016/j.rser.2024.115268
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Battery electric vehicles are pivotal in advancing the circular economy by reducing carbon footprints through their sustainable design and low-emission operations. The growing demand for electric vehicles with fastcharging capabilities and high-energy-density Li-Ion batteries has significantly intensified the importance of effective battery thermal management systems, as elevated temperatures can lead to rapid battery degradation and thermal runaway. The study of typical battery cooling techniques seems insufficient to attain temperature homogeneity in the battery pack during fast-charging applications. Therefore, to address this significant challenge, a holistic analysis of immersion cooling technology for battery thermal management is provided, which has the heat transfer rate in the order of magnitudes compared to a typical battery cooling mechanism. In immersion cooling, the battery is submerged in a dielectric coolant, establishing direct contact between the coolant and the heat source. The current state-of-the-art immersion-cooled battery thermal management systems with single-phase and two-phase techniques are comprehensively reviewed. The performance of available immersion coolants is analyzed, and a suitable coolant selection strategy is formulated for battery immersion cooling applications. Besides, critical issues like suppression of thermal runaway, nucleate boiling, immersion coolant effects on battery, and fluid flow optimization with future directions have been discussed comprehensively. A detailed discussion on the economics of battery immersion cooling as a cost-effective solution is included. This study offers an up-to-date review of battery immersion cooling, fostering an improved understanding of advancement in thermal management systems in the context of promoting a circular economy and zero emissions.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] 3D numerical analysis of a Li-ion battery cooling system with honeycomb configuration in electrical vehicles
    Nazli, Celal
    Gurdal, Mehmet
    Arslan, Kamil
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 109
  • [32] Performance enhancement for a novel cylindrical system Li-ion battery with MXene-based dielectric fluid for immersion cooling
    Singh, Nilesh Krishnadhari
    Sahoo, Rashmi Rekha
    HEAT TRANSFER, 2025, 54 (01) : 1093 - 1115
  • [33] Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles
    Mahamud, Rajib
    Park, Chanwoo
    ENERGIES, 2022, 15 (11)
  • [34] Improving Li-ion battery thermal management via hydrogel evaporative cooling
    Mehryan, S. A. M.
    Jannesari, Hamid
    APPLIED THERMAL ENGINEERING, 2024, 248
  • [35] Li-Ion Battery Pack Thermal Management: Liquid Versus Air Cooling
    Han, Taeyoung
    Khalighi, Bahram
    Yen, Erik C.
    Kaushik, Shailendra
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2019, 11 (02)
  • [36] Li-ion battery cooling system integrates in nano-fluid environment
    Lien Tran
    Jorge Lopez
    Jesus Lopez
    Altovely Uriostegui
    Avery Barrera
    Nathanial Wiggins
    Applied Nanoscience, 2017, 7 : 25 - 29
  • [37] Thermal management of Li-ion battery by using active and passive cooling method
    Nazar, Muhammad Waqas
    Iqbal, Naseem
    Ali, Majid
    Nazir, Hassan
    Amjad, M. Zain Bin
    JOURNAL OF ENERGY STORAGE, 2023, 61
  • [38] Li-ion battery cooling system integrates in nano-fluid environment
    Tran, Lien
    Lopez, Jorge
    Lopez, Jesus
    Uriostegui, Altovely
    Barrera, Avery
    Wiggins, Nathanial
    APPLIED NANOSCIENCE, 2017, 7 (1-2) : 25 - 29
  • [39] Thermal Management of Li-Ion Batteries With Single-Phase Liquid Immersion Cooling
    Sundin, David W.
    Sponholtz, Sebastian
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2020, 1 : 82 - 92
  • [40] Accuracy assessment of an internal resistance model of Li-ion batteries in immersion cooling configuration
    Solai, Elie
    Beaugendre, Heloise
    Bieder, Ulrich
    Congedo, Pietro Marco
    APPLIED THERMAL ENGINEERING, 2023, 220