D-TrAttUnet: Toward hybrid CNN-transformer architecture for generic and subtle segmentation in medical images

被引:1
|
作者
Bougourzi F. [1 ]
Dornaika F. [3 ,4 ]
Distante C. [2 ]
Taleb-Ahmed A. [5 ]
机构
[1] Junia, UMR 8520, CNRS, Centrale Lille, University of Polytechnique Hauts-de-France, Lille
[2] Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Lecce
[3] University of the Basque Country UPV/EHU, San Sebastian
[4] IKERBASQUE, Basque Foundation for Science, Bilbao
[5] Université Polytechnique Hauts-de-France, Université de Lille, CNRS, Valenciennes, Hauts-de-France
关键词
Bone Metastasis; Convolutional Neural Network; Covid-19; Deep learning; Segmentation; Transformer; Unet;
D O I
10.1016/j.compbiomed.2024.108590
中图分类号
学科分类号
摘要
Over the past two decades, machine analysis of medical imaging has advanced rapidly, opening up significant potential for several important medical applications. As complicated diseases increase and the number of cases rises, the role of machine-based imaging analysis has become indispensable. It serves as both a tool and an assistant to medical experts, providing valuable insights and guidance. A particularly challenging task in this area is lesion segmentation, a task that is challenging even for experienced radiologists. The complexity of this task highlights the urgent need for robust machine learning approaches to support medical staff. In response, we present our novel solution: the D-TrAttUnet architecture. This framework is based on the observation that different diseases often target specific organs. Our architecture includes an encoder–decoder structure with a composite Transformer-CNN encoder and dual decoders. The encoder includes two paths: the Transformer path and the Encoders Fusion Module path. The Dual-Decoder configuration uses two identical decoders, each with attention gates. This allows the model to simultaneously segment lesions and organs and integrate their segmentation losses. To validate our approach, we performed evaluations on the Covid-19 and Bone Metastasis segmentation tasks. We also investigated the adaptability of the model by testing it without the second decoder in the segmentation of glands and nuclei. The results confirmed the superiority of our approach, especially in Covid-19 infections and the segmentation of bone metastases. In addition, the hybrid encoder showed exceptional performance in the segmentation of glands and nuclei, solidifying its role in modern medical image analysis. © 2024 The Author(s)
引用
收藏
相关论文
共 50 条
  • [21] Rethinking Image Deblurring via CNN-Transformer Multiscale Hybrid Architecture
    Zhao, Qian
    Yang, Hao
    Zhou, Dongming
    Cao, Jinde
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [22] Hybrid CNN-transformer network for interactive learning of challenging musculoskeletal images
    Bi, Lei
    Buehner, Ulrich
    Fu, Xiaohang
    Williamson, Tom
    Choong, Peter
    Kim, Jinman
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 243
  • [23] CloudSwinNet: A hybrid CNN-transformer framework for ground-based cloud images fine-grained segmentation
    Shi, Chaojun
    Su, Zibo
    Zhang, Ke
    Xie, Xiongbin
    Zhang, Xiaoyun
    ENERGY, 2024, 309
  • [24] UTNETPARA: A HYBRID CNN-TRANSFORMER ARCHITECTURE WITH MULTI-SCALE FUSION FOR WHOLE-SLIDE IMAGE SEGMENTATION
    Huang, Boqiang
    Ying, Jiayu
    Lyu, Ruizhi
    Schaadt, Nadine S.
    Klinkhammer, Barbara M.
    Boor, Peter
    Lotz, Johannes
    Feuerhake, Friedrich
    Merhof, Dorit
    IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024, 2024,
  • [25] Alternate encoder and dual decoder CNN-Transformer networks for medical image segmentation
    Zhang, Lin
    Guo, Xinyu
    Sun, Hongkun
    Wang, Weigang
    Yao, Liwei
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Multi-Scale Orthogonal Model CNN-Transformer for Medical Image Segmentation
    Zhou, Wuyi
    Zeng, Xianhua
    Zhou, Mingkun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (10)
  • [27] HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation
    Zhang, Huaikun
    Lian, Jing
    Yi, Zetong
    Wu, Ruichao
    Lu, Xiangyu
    Ma, Pei
    Ma, Yide
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [28] Laser Stripe Segmentation of Weld Seam Based on CNN-Transformer Hybrid Networks
    Wang, Ying
    Gao, Sheng
    Dai, Zhe
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (24):
  • [29] STA-Former: enhancing medical image segmentation with Shrinkage Triplet Attention in a hybrid CNN-Transformer model
    Liu, Yuzhao
    Han, Liming
    Yao, Bin
    Li, Qing
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1901 - 1910
  • [30] A CNN-Transformer Hybrid Approach for Crop Classification Using Multitemporal Multisensor Images
    Li, Zhengtao
    Chen, Guokun
    Zhang, Tianxu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 847 - 858